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PREFACE

I must point out that this is not an essay on science phi-

losophy but a personal re�ection on some fundamental no-

tions and concepts underlying the theory of phase transitions,

such as limiting processes, all parts of our classical mathema-

tical heritage. Speci�cally, this essay is devoted to commen-

ting and analyzing the study of many particle Bose systems

in the framework of the phase transitions theory of in�nitely

extended systems.

Currently, experimental progress in the study of mesoscopic

particle systems has led to a better understanding of pheno-

mena associated to �nite particle systems, opening conceptions

such as; thermodynamic limit, breaking of symmetries, phase

transitions, to criticism and permanent revision.

Often we confuse the phenomena with our attempts for re-

presenting them through mathematical or conceptual models.

Indeed, notions such as limit and continuity like to be e�ective

ways to approximate the discrete nature of many physical phe-
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nomena. The transitions between di�erent thermodynamic

states of a many particle physical system exist, as well as the

ruptures of symmetries. However the identi�cation of the sin-

gularities of thermodynamic functions, which arise in the ther-

modynamic limit-never reached in practice-, with the cause of

the phenomenon, seems to be a debatable matter, although

in their vicinities the probability of the transition occurring is

very high and in fact it should take place. In other words, the

probability of the system accessing di�erent states increases

signi�cantly when the values of certain parameters are in the

vicinity of a singularity of the limit functions. Moreover, surely

we will never mathematically describe such kind of phenomena

in such a way that the underlying models can give us absolute

and exhaustive physical description about them, but we can

always predict its occurrence with a degree of certainty appro-

priate to our purposes.

The �rst �ve chapters concern with topics such as, realism,

relativism, the role played by mathematics in the development

of physical theories, the problems of underdetermination of

scienti�c theories and the demarcation between science and

non-science, among others.

The remaining chapters deal with the main mathematical

strategies used for studying bosonic phase transitions. A very

important place in the framework of the spontaneous rup-

ture of continuous symmetries is occupied by the notion of

quasimeans developed by N. N. Bogoliubov. We will also

brie�y analyze the open questions left by the results obtained

from experiments with trapped gases (mesoscopic systems).
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The validity of our physical models depends on their corres-

pondence with reality, even though this may not be immediate.

This is the case of the so-called non conventional Bose-Einstein

condensation (independent on temperature), discussed in chap-

ter 20. Thus, for example, the ideal Bose gas disturbed by

a suitable external source, breaking the symmetry associated

with the conservation of the number of particles, undergoes,

in the thermodynamic limit, a macroscopic occupation of the

ground state not related to any singularity. Moreover, this is

an independent on the temperature occupation. In this con-

text, I included in chapter 21 a recent work with Rosanna

Tabilo, dealing with this interesting subject.
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1. Introduction

There is no dissimilarity between the human act of observing

an object or experimenting on it and a blind action exerted by

one arbitrary physical system on another. The only di�erence,

is that, in the �rst case, it seems to us that the reasoning, free

will, and what we call perception mediate such action. That

is, it materializes due to a cause or reason that we consider

�not blind.� However, for all practical purposes, the only thing

that underlies this phenomenon, in both situations, is the �in-

teraction� between two objects of the world, one of which we

arbitrarily call �subject� because we recognize ourselves in it.

There is no any other way in which the materiality of things

manifests its existence to the human species.

An experiment is a physical process like any other. �Tunnel

e�ect�, �superconductivity�,�super�uidity� or �bosonic conden-

sation�, to mention some phenomena, are not a product of hu-

man �subjectivity.� Indeed, they do not require the presence

of any observer to occur.

If we stop looking at the Moon, all the e�ects that its objec-

tive presence produces on us, directly or indirectly, will not be

eliminated. Thus, the world is manifested and shown through

interaction.

In this physical encounter, which in many ways is a collision,

we recognize the objects of reality, beyond any name or deno-

mination with which we identify them. Their existences be-

come evident to us when we transform them into tools, ex-

tensions of our our sensory organs devoted to intervening and

changing the world.
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Here, there is nothing to prove. The recognition of this basic

facts is, �nally, foundation of the materialistic realism that this

essay deals with. The same realism that makes the chinese

philosopher Mo-Tzu, in the �fth century BC, to a�rm the

existential primacy of the things of the world above the names

we assign them.

On the other hand, the systematization, application and ex-

tension of this knowledge of the reality, product of this fun-

damental and material interaction, are possible in the fertile

ground of culture, built on complex networks and links. If our

species wishes to �know� the world, it must go to meet it.

Thus, what is impossible for a man is feasible for the species.

And this common enterprise is achievable because we do not

di�erentiate one from the other so signi�cantly as to make

the phenomenon of communication unviable, even though we

belong to di�erent contexts. Our evolution has been structured

on this fact.

The paths that led humanity to what we currently know as

science include the establishment of criteria of truth intended

to demonstrate conjectures or propositions, in a scenario of

experimental veri�cation. Thus, slowly, a set of novel practices

and strategies were set up, freeing the emerging scienti�c know-

ledge from the predominant scholasticism in the later Middle

Ages.

Since the Renaissance and the advent of rational empirical

science, man and nature are in an unprecedented symbiosis in

human history. From this moment, observation, experimenta-

tion and reason are at the service of each other in a constant
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�ow.

The results of scienti�c research will depend not on the de-

sires or simple intuitions of homo sapiens, but on experimen-

tation and on the very nature of the phenomena, that is on

factors associated with their intrinsic characteristics.

In this sense, Galileo, when analyzing the speed of fall of

the bodies, leaves the Aristotelian teleology. He stops wo-

rrying about the �nal causes, looking for the regularities of

phenomena - �accidents� - and introduces mathematics as an

indispensable instrument for natural philosophy. Thus, the

long path that culminates with the advent of rational empi-

rical science is a by-product of human evolution as a whole.

This is the recent history of a liberation, initiated from the

very moment when Galileo dismisses some of the thesis of the

aristotelian philosophy.

Great con�icts, changes or revolutions are not the product

of immediacy, but the result of long historical processes. Des-

pite di�erences, emphases and positions, the evolution of what

concludes today with what we call science is the history of a

gradual but persistent process of decanting towards more in-

dependent styles of thought. The advance to the knowledge

of the nature supposes to the human being to resign an im-

portant part of its magical vision of the world, establishing a

more distant connection with it.

The spectacular development of group theory and geome-

try from Gauss, Galois, Klein, Cauchy, Lobachevski, Riemann

and other mathematicians during the nineteenth century, along

with notable discoveries in physics, led, during the �rst quar-
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ter of the 20th century, to the the emergence of the two most

important theories of the last hundred years: the theory of

relativity (special and general) and quantum mechanics. With

them, in addition, there is an explicit rupture with previous

conceptions of reality.

Just as contingency de�ned the position of Fourier, Laplace,

and Galois during or immediately after the French Revolution,

or that of the natural philosopher Isaac Newton (1643-1727),

his disciple Colin Maclaurin and his contemporary Robert Boyle

- impregnated with the protestant faith-the philosophical and/or

ideological positions of those who were actors in the epoch that

preceded and followed the aforementioned scienti�c revolutions

(quantum mechanics and relativity) -Hertz, Mach, Bohr, Pauli,

Heisenberg, Bohm, Einstein, Schrödinger-are part of historical

circumstances, which is that of two world con�agrations, a

product of, among other things, the expansionist policies of

European economic empires, the impoverishment of large sec-

tors of society and the maintenance of feudal structures (the

old rural structure persisted in France until 1914), etc.

What de�nes us as human beings is the full assumption of

our freedom, not of our circumstance, but of the position we

assume in front of it. In deciding we not only decide for our-

selves but for all human beings. Such positioning is always an

act even if it acquires the form of disa�ection or lack of inte-

rest. Thus, our existence will ultimately be nothing more than

the sum of those moments. In the same way, all transcendence

is only memory collected by others.

DMATULS No. 1, 2018



DMATULS ESSAYS 7

Thus, the Copenhagen school, part of the group of scientists

who generated the quantum theory, has an ideological debt

with the classical German philosophy, especially with Kant,

with the positivism, and extreme empiricism.

But why then had Born not told me of this �pilot wave�. If

only to point out what was wrong with it? Why did Von Neu-

mann not consider it? More extraordinarily, why did people

go on producing impossibility� proofs, after 1952, and as re-

cently as 1978? When even Pauli, Rosenfeld, and Heisenberg,

could produce no more devastating criticism of Bohm's version

than to brand it as �metaphysical� and �ideological�? Why is

the pilot wave picture ignored in text books? Should it not be

taught, not as only way, but as an antidote against the prevail-

ing complacency? To show that vagueness, subjectivity, and

indeterminism, are not forced on us by experimental facts, but

by deliberate theoretical choice?. (J. Bell [149])

Although I have pointed out names to indicate important

milestones, it seems necessary to emphasize that science is not

only the �nal result of contributions from individuals. Science

and scientists are part of the human history development.

This activity is a by-product of that interminable movement,

in which the whole seems to prevail over the individual, and

the new knowledge necessarily emerges from the previous.

Many of the issues that will be open to discussion in the

light of the apparent or real con�ict between quantum me-

chanics and relativity (at least in the so-called Copenhagen

interpretation) are nothing more than a resurgence of very old

disputes), present even today, for example, regarding deter-

minism, indeterminism, causality, chance, etc.
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Independently of the legitimate position that each one can

take with respect to the future of each one of those theories, the

clari�cation of supposed incompatibilities, if any, will, surely,

be the responsibility of the next generations.

The con�ict Kuhn-School of Vienna or Kuhn-Popper, pre-

vious to the Congress of Philosophy of Science (1965-London)

where both characters faced, is not the one of the realism

versus the idealism, but the manifestation of a con�ict gene-

rated in the prevailing functionalism, where logicism, cryptic

and abstruse for the general public and even for the academic

world, Popperian falsi�ability, the concept of �scienti�c pro-

grams�, due to Imre Lakatos, and Feyerabend's anarchism, will

confront each other and to Kuhn's psychologism with his �His-

tory of Scienti�c Revolutions,� a quick-read, easily digestible

text.

Whether or not Kuhn intended his work to end up as a useful

instrument of relativism and anti-realism, it ended up being its

destiny.

Henceforth, with the abandonment of any possibility of de-

termining, epistemically speaking, the validity or superiority

of any of the so called �scienti�c paradigms,� concepts such as

�conceptual framework�, �evaluation standards� and �consen-

sual truth� were made part of the lexicon and practice of many

scientists and philosophers. Thus, necessarily, it is placed in

the best tradition of �pluralist� or �universalist� constructivism

and, as a corollary, its proposal is established as the preferred

weapon of the relativism defended by postmodernism.
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A set of a priori assumptions, however plausible they may

seem, and a posteriori conclusions, rooted in a logical and/or

mathematical language do not constitute necessarily a scien-

ce. Mathematical models are instruments, tools, intended

primarily to describe and allow the predictability of natu-

ral phenomena and not to transform themselves into realities

in a pythagorean sense. A direct reference to reality either

through conducted experiments, or veri�able facts will be al-

ways needed.

These assumptions-which one might call metaphysical ones-

are otherwise necessary. Without them, the advent of science

would have been impossible. This adventure, from Galileo but

mainly from Newton to our days, is that of scienti�c realism,

which implies, in addition to the acceptance of the existence of

a knowable external world, the gradual and consistent aban-

donment of the atavistic practices and beliefs who ruled the

Western world for millennia. I say �Western� because, since

the ancient Greece, our science is, indeed, the product of the

historical development of the West.

Today, the exacerbated �subjectivisms�, �relativisms� and

�functionalisms� have deployed in their fullness their non asep-

tic essences, by contributing, directly or indirectly, to the re-

placement, in general, of the real for a consciousness, if not

false, at least distorted of our world. In that sense, if we only

aspire to a relational science (like that of structural realism)

or a phenomenal science, we will be content to ask ourselves

�how?�
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However, that suspension of other fundamental questions

that in sciences such as physics may be temporary legitimate,

becomes unacceptable in social sciences, because these are pre-

cisely the answers to �what for?� and �why?� those that allow

us to intervene the social reality of man, his own creation.

Man has deciphered his own genetic code, intervened and

modi�ed genetics of bacteria by creating new species, designed

particle accelerators, powerful enough to scrutinize the mi-

croworld of elemental particles emerging from quantum va-

cuum (Higgs bosons, neutrinos, etc.), has generated important

mathematical and physical theories (string theory, standard

model, among others) to account for all physical phenomena

(gravitation, quantum electrodynamics, etc.), always to the

saga of a hitherto elusive uni�ed theory. He has taken impor-

tant steps to unravel the mysteries of the universe. Human

society has more than enough technical means to handle huge

amounts of information. Technology allows us to observe the

cosmos to previously unsuspected limits (observatories or radio

telescopes), and to handle information, extending our senses

beyond the imaginable.

On the other hand, despite the current technological deve-

lopment, the profound transformations in terms of our world

view and social implications that should have been produced

by the e�ect of scienti�c activity are far from being materia-

lized in a global and de�nitive sense. Quite the contrary, what

dominates in our time is the discourse of a legion of necro-

mancers, alchemists, saints, healers and prophets of the apoca-

lypse. They no longer travel through narrow alleyways of small
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towns or isolated villages where the sounds are only echoes

of the footsteps of their own few inhabitants. Nowadays they

wander through the open spaces and in�nite avenues of the

great cities, vociferating their omens, crying out to ghosts, u-

sing the media, carrying their loudspeakers, appealing to those

irrational fears coined in our customs and brains in past times.

Thus, what prevails today is pseudoscience.

Scienti�c knowledge has become cryptic, disintegrating and

impoverishing itself immediately to the contact with the as-

phalt of cities, like a distant rumor that decays to be only

a set of disconnected, nonsense and distorted sentences.The

promised knowledge society has not come true yet. The epi-

curean plan to free human beings from their fears is truncated.

DMATULS No. 1, 2018



DMATULS ESSAYS 12

2. Some preliminary reflections

2.1. Science and underdetermination. American theore-

tical physicist Kip Thorne in his book �Black Holes and Time

Warps� wrote,

In the curved spacetime paradigm, the verbal picture of Eins-

tein's �eld equation is the statement that �mass generates cur-

vature of the spacetime.� When translated into the language

of the �at space paradigm, this �eld equation is described by

the verbal picture �mass generates the gravitational �eld that

governs the shrinkage of rulers and the ticking of clocks.� Al-

though the two versions of the Einstein's �eld equation are

mathematically equivalent, they verbal pictures di�er profoundly.

It is extremely useful in relativity research, to have both

paradigms at one's �ngertips. Some problems are solved most

easily and quickly using the curved spacetime paradigm; others

using �at spacetime. [129].

It is not surprising that two di�erent perspectives, such as

those described by Thorne, result to be mathematically equi-

valent, considering that they attempt to describe a same phe-

nomenon. However, this does not imply that the purpose of

elucidating which of them gives a better representation of rea-

lity should be abandoned by science. Thus, for example, classi-

cal �eld theory (CFT) allowed to overcome the non-locality of

Newton's theory, a problem recognized by him, regardless of

the new questions arising from the new theory.

That the scienti�c proposals elaborated to make the world

comprehensible to us are not complete and need the analysis

and development of new conjectures and hypotheses is not new.
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Scienti�c activity is constructed in that way. Surrender to

fatigue or relativisms, including pragmatism, would be a fatal

mistake.

The question pointed out by Thorne is what has been de-

nominated �underdetermination of scienti�c theories,� that is,

phenomena are explicable, empirically, by more than one theo-

ry.

The so-called �conventionalist� current, in general, considers

that theories �nally depend on customs and conventions, which

determine only �provisional trues.� This fact inscribes this

position in the class of relativisms.

Henry Poincaré in his article entitled �The Space� (1902),

published in Science and Hypothesis, refers to beings living on

a sphere and given themselves to the task of determining the

geometry of their world, without noticing that the temperature

in this solid body is variable and that it descends uniformly

from its center to the surface. The �nal e�ect would be the

dilation of the objects when approaching the center and its

reduction in size, including the measuring instruments, when

approaching the surface. His conclusion was the following one:

If to us geometry is only the study of the laws according to

which invariable solids move, to these imaginary beings it will

be the study of the laws of motion of solids deformed by the

di�erences of temperature alluded to [...] If they construct a

geometry, it will not be like ours, which is the study of the

movements of our invariable solids; it will be the study of the

changes of position which they will have thus distinguished, and

will be �non-Euclidean displacements,� and this will be non-

Euclidean geometry. So that beings like ourselves, educated in

such a world, will not have the same geometry as ours.[130]
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If the question is that the geometry we determine will de-

pend on our special way of interacting physically with our en-

vironment, which would make it impossible for us to establish

whether it is intrinsic and structural to the universe - if that

can make sense -, I must agree on this point with Poincaré.

He indirectly assumes, when posing the problem, a essential

question: the possibility of mathematizing reality. This is a

fundamental issue to take into consideration. On the other

hand, although we will never have a view of our physical world

independent of our models, as Stephen Hawking proposes, they

do not have to be a pale image of physical realm, in other case

we would be condemned to inhabit the cave of Plato, from

which we will never leave.

It seems necessary to highlight some aspects of the problem

that I consider important. First, science, in this case physics,

can not determine de�nitive limitations to its own knowledge

of world, even if they appear as inevitable, since under these

conditions, progress becomes a di�cult task. Otherwise, we

had to settle for ptolemaic cosmology. Indeed, nowadays, it

should be premature to think of the existence of unbridgeable

limits of physical knowledge and una�ordable scienti�c ques-

tions, unless we declare ourselves hopelessly skeptical.

It would be arrogant to think that science must abandon pur-

poses that it surely shared, in its beginnings, with philosophy.

The �rst objective is to assume the possibility of accessing to

knowledge and constituting itself as a transforming instrument

of the world.
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The second purpose is the determination of those elements

that constitute reality, which inevitably refers us to the onto-

logical question.We are beings for action, for praxis, but this

does not prevent us to assume the before mentioned task.

This purpose, apparently resigned by some groups of the

scienti�c community, has been assumed by philosophy. In the

paper �On the epistemological implications of geometric con-

vention�, published in Ontology Studies (2012), regarding the

geometric questions mentioned by Poincaré and outlined very

brie�y in this essay, the author writes:

If the geometry of the world is the result of convention, agree-

ment and comfort (whether conceptual or heuristic), it seems

almost impossible to access the true nature of the cosmos. How-

ever, this �nding does not seem to imply a renunciation of their

understanding. Perhaps a revision of the concept of intelligi-

bility, insofar as one accedes to the world itself, loses its in-

tuitive sense and retreats to the pretension of regularity and

predictability. [131]
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2.2. Ceteris paribus. It is clear that a set of axioms, �nite

in addition, is a starting point to construct a narrative that

can give not only logical but also mathematical explanatory

coherence to the regularities that we observe. That fact makes

impossible for us to identify in an absolute way these postu-

lates with the detected or conjectured uniformities since they

possess only a conditional and therefore provisional character.

For example, the law of Newtonian inertia turns out to be

an idealization. In practice all objects of world interact with

gravitational �elds, even weakly. From this it can be concluded

that there are no bodies free from external forces. In this sense,

identifying our theories with the reality of the world, in a sense

of one-to-one correspondence, is wrong. Thus, axioms, prin-

ciples or postulates, especially when set in a context of uni-

versality, have to be always under scrutiny. In this sense, it

is likely that from our most successful physical theories, rela-

tivity and quantum mechanics, little will remain in the future.

Possibly their fate will be to be replaced by broader theories

that somehow include them.

On the other hand, it should be arbitrary to infer from the

absence of absolute correspondence that scienti�c theories do

not re�ect more than our personal perceptions of the world

and say nothing of what it is.

Rational empirical science is an activity that has become

highly complex, both in its theoretical and practical deve-

lopment.
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The permanent discussion of matters such as �demarcation�-

or how to distinguish science from non science- and �underde-

termination� account for this fact, even though these problems

seem to be of greater interest for philosophy than for science

itself.

On the other hand, that certain variables, for example in a

mathematical model, can be considered to be non-in�uential,

constants or dispensable, is a natural and necessary practice in

science. This is the so-called �Ceteris Paribus� clause - all other

things being equal - naturally incorporated into all science.

Physicist Lisa Randall mentions in his work �Warped Pas-

sages. Unraveling the Mysteries of the Universe's Hidden Di-

mensions� [34] an essential aspect of all science: the necessary

separation between the meaningful and that accessory for the

understanding of a phenomenon.

Scientists often average over or ignore (often unwittingly) phys-

ical processes that occur on immeasurably small scales when

formulating their theories or setting up their calculations. New-

ton's laws of motion work at the distances and speed she could

observe. He didn't need the details of general relativity to make

successful predictions. When biologists study a cell, they don't

need to know about quarks inside the proton.[132]

Thus, although contingency is one, indivisible, our brains

discriminate those aspects of reality that are indispensable for

us to act, fragmenting and making it apprehensible, reducible

and �nally manageable. However complex or strange the world

may seem, its intelligibility lies precisely in the possibility of

performing this operation. The inapprehensible and chaotic

world exists only in the minds of those who wish to see that.
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3. Mathematics

Nowadays, almost every scienti�c and technological disci-

pline makes use of mathematical advances, however, mathe-

matics itself has become independent of its initial roots. The

degrees of generality and abstraction of mathematical theories

have surpassed all expectation and the underlying creative pro-

cess resembles us that of the artistic creativity.

Rodolfo Llinás pointed out that [157],

For an organism to interact successfully with its external world,

its nervous system must be able to handle (processing and

understanding) easily and quickly the signals that it receives

through its senses. Once this information is transformed into

a suitable executed motor signal, it is returned to the external

world. It is obvious that the properties of the internal func-

tional space and those of the external world are di�erent, how-

ever for the motor response to have some useful meaning, they

must have some similarity between them. This internal func-

tional space constituted by neurons, must represent the external

world properties and, in some sense, they must have equivalent

attributes. Such as a translator must operate with conceptual

continuity between the languages he is translating, this internal

functional space must preserve the conceptual continuity.

In other words, it would be an absurd to think that our

own biology, in permanent interaction with the environment,

does not give us adequate information about it. In this way,

human beings possess innate or, if you will, biological abilities

to identify patterns, quantities (such as the so-called �mumero-

sity�, determined by topographic maps located in the parietal
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lobes of the brain - giving the neuronal basis to our arithmetic

capabilities-), recognition of space, abstraction capacity, etc.,

that is, capacities structured on our own material nature, with-

out whose contribution would have resulted impossible what

we call mathematical reasoning, based on the generation of

symbolic representation and fundamentally on the presence of

language, a phenomenon that would have emerged prior to

the development of numerical systems, based on social inte-

raction, that is, as part of the culture [158-159]. In this same

direction, currently, active research areas are the study of the

neural activity associated with the generation of conclusions

in deductive problems of an elementary nature.

In any case, although the human capacity to develop mathe-

matics depends on the brain, it emerges from the interaction

of man with nature and his social environment as a historical

product. Thus, although mathematics satis�es all the require-

ments of a constructive social process, the biological imprint

that underlies its emergence is undeniable, being both com-

plementary aspects of its development. Thus, the intuitionist-

logicist dispute seems to have always been futile.

Finally, the multiple attempts to categorize and elaborate a

kind of taxonomy of the processes implicit in the development

of scienti�c research, whatever the discipline, seem to be di-

luted because of the complexity and diversity of ways in which

this activity manifests itself. This should not be considered as

a disadvantage but as a circumstance that favors its develop-

ment and advance, considering that diversity is, precisely, one

of the pillars on which our own evolution is based.
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4. Neither substantialism nor relationalism

There are not, in nature, such things as circles, triangles,

straight lines, dots, etc, however these basic abstractions a-

llow us to handle reasonably well our every day world. What

we hope is that the qualitative and quantitative di�erences

between our idealizations and approximations (these notions

are di�erent but not mutually exclusive) to the physical realm

turn out to be negligible compared with it, in any proper sense.

This fact should not be understood as the resignation to the

legitimate aspiration of elucidating the signi�cant factors that

account for the materialization of any phenomenom, restricting

science to a merely descriptive or phenomenological role. Thus,

the substitution of the old metaphysical assumptions by the

logical coherence of mathematical constructs, does not relieve

us of our obligation of giving a satisfactory physical expla-

nation (despite the controversial nature of this notion from

a philosophical point of view) about the natural phenomena,

that is to say, in a substantialist or realist way. In other words

we should

[...] not ignore or leave out of account altogether the details

of the mechanisms, whatever it is, that is in operation in the

phenomena under discussion [151]

Therefore, the success of relational theories does not justify

giving up the search for the mechanisms underlying natural

phenomena.
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In this scenario, the role of mathematical physics has been,

historically, to give disciplinary support to many of the achieve-

ments of physicists. However, the relationship between both

sciences could be described as bittersweet in many cases. In

this sense, Barry Simon declares:

The analysis of mathematical models for physical phenomena

is part of the subject matter of mathematical physics. By ana-

lysis is meant both the rigorous derivation of explicit formulas

and the investigation of the internal mathematical structure of

the models. In both cases, the mathematical problems which

arise lead to more general mathematical questions not asso-

ciated with any particular model. Although these general ques-

tions are sometimes problems in pure mathematics, they are

usually classi�ed as mathematical physics since they arise from

problems in physics [...] The techniques used and the general

approach to the subject have become more abstract. Although

in some areas the physics is so well understood that the pro-

blems are exercises in pure mathematics, there are other areas

where neither the physics nor the mathematical models are well

understood. These developments have had various serious e-

�ects not the least of which is the di�culty of communication

between mathematicians and physicists. Physicists are often

dismayed at the breadth of background and increasing mathe-

matical sophistication which are required to understand the

models. Mathematicians are often frustrated by their own in-

ability to understand the physics and the inability of the physi-

cists to formulate the problems in a way that mathematicians

can understand [152].

DMATULS No. 1, 2018



DMATULS ESSAYS 22

For Erwin Schrödinger

The demand for continuous description was encouraged by the

fact that the mathematician claims to be able to indicate simple

continuous descriptions of some of his simple mental construc-

tions [...] Physical dependences can always be approximated

by this simple kind of functions (the mathematician calls them

'analytical', which means something like 'they can be analysed').

But to assume that physical dependence is of this simple type,

is a bold epistemological step, and probably an inadmissible

step [141].

It would be a mistake to think that a physical conjecture can

end up settling as a valid or a plausible one only because it has

be founded on rigorous mathematical notions. In this sense,

it is expected that the consistency and explanatory power of

the physical meaning behind all mathematical discourse prevail

over any other considerations, including those of an aesthetic

nature (beauty or simplicity of mathematical constructs, for

example). Moreover, it seems an unreasonable idea to discard

a theory before evaluating its theoretical soundness against the

experiments or the appearance of new phenomena.

The relational character of mathematics implies that two di-

�erent physical conjectures (even contradictory between them)

about reality may lead to the use of similar analytical tools,

especially in the sense that they must account for a unique

experience, backed by data and measures also unique.
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Logic and therefore mathematics do not care about the ver-

bal sense of propositions. Indeed, it is a well known fact that a

hypothesis will be proved false when it leads to a false conclu-

sion (in other words if conclusion is false, then the hypothesis

must be false).

Science uses tested methods to �lter the facts. This norma-

tive element is of course most visible in the psychology of the

mathematician, for even though his thoughts are always in some

sense �correct,� there is a psychological distinction to be made

between what he knows to be true and what he simply con-

jectures or intuits. But a normative component can also be

sensed in the essentially organic conception of things that en-

crusts logical thought in the world. In any case, experimental

testing always begins what one believes to be logical. Hence

the failure of an experiment sooner or later entails a change of

logic, a deep change in our thinking. (G. Bachelard, [120])

In this sense, until its experimental or observational refu-

tation, a false physical conjecture, accompanied by a mathe-

matically coherent theory, might seem to us true. Thus, for

example, violations of the conjectured parity symmetry (P) as

well as charge-parity symmetry (CP) introduced by E. Weyl

in quantum mechanics in 1927 and 1932 were experimentally

detected in the cases of the weak interactions in 1957 [116] and

1964 [117], respectively. Before the �rst experiment, P and CP

symmetries were assumed true for all interactions in nature.
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I felt sure that parity would not be violated, there was a po-

ssibility it would be, and it was important to �nd out.( Richard

Feynman [118])

A rather complete theoretical structure has been shattered at

the base and we are not sure how the pieces will be put together.

(I. Rabi [119])

This suggests us that it is risky to assume the universality

of intuitive physical notions when considered in the context of

counterintuitive theories, such as quantum mechanics.

The mathematical tools used almost one thousand �ve hun-

dred years ago to geometrically determine the trajectories of

the celestial bodies under the geocentric assumption the earth

is �at and �xed and all the objects in the known universe rotate

around it, surely produced analogous results, restricting our-

selves to the ancient scenario, to those obtained nowadays by

using the notion of relative motion. Moreover, two plausible

physical conjectures could lead to similar mathematical mo-

dels. That means that for their construction, such assumptions

are su�cient but not necessary conditions. On the other hand,

the same phenomenon can manifest di�erent traits, depending

on the context. This makes it necessary to apply di�erent

mathematical strategies in each case. The above mentioned

facts suggest us that there is a clear risk of overestimating

the role of our mathematical idealizations as support of our

physical theory, that is to say, conjectures.

Note that many mathematical models or complex mathe-

matical constructions serve to relate data and experiments

without necessarily being consubstantial to a particular hypo-
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thesis or that is to say, without having been derived as sine qua

non conditions from it or from basic principles or even without

considering the mechanisms underlying a physical phenomena.

In this sense, these models are not explicative but heuristic

tools which could or not be useful for elucidating mechanisms.

Thus, for example, although the renormalization group theory

was built on the basis of mathematical considerations it gives

valuable information about phenomena exhibiting universality

in the sense that they can be grouped, with their help, in

classes associated to global features.

Finally, it has to be pointed out that the use of heuristic

mathematical tools as, for example, Dirac functions, Feyn-

man path integrals or integrals over spaces of paths (quan-

tum �eld theory), symmetry breaking terms in classical and

quantum many particle systems (statistical mechanics), etc.,

has represented usually a necessary strategy to the study of

nature. In spite of sometimes that tricks lead, �nally, to well

de�ned mathematical notions, which may give some theoreti-

cal support to physical conjectures, this fact does not consti-

tutes by itself a su�cient condition to validate them. Thus,

the so-called string theory, theoretical construction which in-

cludes the notion of curved hidden dimensions introduced by

the Kaluza-Klein theory (Kaluza-Klein compacti�cation of ex-

tra dimensions) [121], far away of being physically con�rmed

yet, has led to arduous disputes between defenders [122] and

detractors [123]. In this case, the lack of empirical evidence

(after forty years of research), one of the main criticisms to

this theory, seems to be a little unfair in the sense that many
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physical conjectures have been experimentally tested only af-

ter many decades (for example Bose Einstein Condensation).

Since this proposal is still far from being validated, perhaps

the most important objection that can be made is related, not

to the theory itself, but mainly to an overly triumphalist me-

dia treatment to which some of its own creators have possibly

cooperated because of an excess of enthusiasm.
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5. Phase transitions

Allow me a small digression on in�nite limits. In spite of

the ancient greek fear of in�nity, many of the current phys-

ical theories are founded upon mathematical concepts such

as in�nite processes. As well as the method of exhaustion

based on sucessive aproximations, developed by Antiphon and

Bryso and whose correct mathematical proof is due to Eu-

doxus, was used in ancient times to calculate areas of di�erent

geometric �gures [42], notions as thermodynamic limit and

in�nitely extended systems have been commonly applied in

the framework of equilibrium statistical mechanics of classical

and quantum systems to study real physical systems. Unlike

Eudoxus, who consciously avoided to prove his hypothesis by

successive approximations which involves considering the un-

derlying limits, today, in�nite processes are part of the usual

language of those scienti�c branches.

In classical and quantum equilibrium statistical mechanics,

phase transitions are associated to the non analyticity, of well

known thermodynamic functions. H. Kramer in 1934 [1] was

the �rst in suggesting that the above mentioned thermody-

namic limit, consisting in that the density of particles remains

constant while both the number of particles and the volume

of the region enclosing them tend to in�nity in a suitable way,

should be used to explain singularities of the mentioned func-

tions. This limit was introduced, in practice, by the �rst time

by Lars Onsager in 1944 [2], for exactly solving the two di-

mensional Ising model, proving by this approach the existence

of di�erent phases. In this sense, phases correspond to zones
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of analyticity of the limit free energy, while phase boundaries,

are identi�ed with its regions of non-analyticity.

Mathematical aspects of the theory of phase transitions based

on this strategy were initially developed by van Hove in 1949

[3] and N.N. Bogoliubov in 1946 [4] and received further im-

pulse from works of many mathematicians and physicists du-

ring sixties and seventies of the past century (see for example

[8,20,27,39], [59-62], [69-72], [77,79,80], [86-91]).

Since, all macroscopic quantities of physical interest can be

obtained from di�erent order derivatives of basic thermody-

namic functions as the free energy, Paul Ehrenfest in 1933 [6],

classi�ed phase transitions by using the lowest order of some

derivative of the free energy presenting discontinuities. Thus,

�rst order phase (or sudden transitions) and second order tran-

sitions were associated to discontinuities in the �rst and second

derivatives of this function, respectively. However this catego-

rization admits to be extended to high order phase transitions.

Therefore, they have been interpreted, mathematically spea-

king, as singularities of thermodynamic functions in the ther-

modynamic limit. On this conception lies not only Landau

theory of continuous phase transitions, but also Lee Yang and

renormalization theories, including all mean �eld strategies de-

veloped the last century.

In spite of the fact that far away from a small vicinity of a

critical point, where �uctuations can be ignored, the so-called

in�nite equilibrium states (or KMS states in the quantum case)

approximate fairly well both qualitatively and quantitatively

the thermodynamic behavior of many real �nite systems, the
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�nite thermodynamic functions do not exhibit any disconti-

nuity or singularity and in this sense phase changes cannot

be derived from them. Moreover, this approach is unsatisfac-

tory for the study of critical points, where subtle microscopic

phenomena like �uctuations appear to contribute, facilitate

or even produce phase transitions. On the other hand, the

renormalization group theory (RGP) has given fruitful phe-

nomenological insight in some cases and it has failed in other

situations. In this context it has long been known that the

standard de�nition of phase transitions does not apply to all

cases and it should be generalized or reformulated indepen-

dently of notions such as thermodynamic limit. Boltzmann

directly poses the problem [58]:

Which represents the observed properties of the matter more

accurately, the properties on the assumption of an extremely

large �nite number of particles, or the limit of the properties if

the number grows in�nitely large?

Oliver Penrose in 1970 [97] pointed out that the real pro-

blem of statistical mechanics can be reduced to �nd and use the

relationship between the macroscopic description (coarse-grain

scheme) of physical objects and the microscopic description of

them (�ne-grain scheme) as dynamical systems of molecules.

In the last ten years these issues have been subject to a great

deal of critical examination by science philosophers [48-52].

The question arises whether this is the best that can be done.

Interesting attempts to avoid the use of thermodynamic limit,
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in a general framework, have been done the last decades. Some

of them are related to the de�nition of a new microcanonical

equilibrium state for quantum systems with �nite dimensional

state spaces whose density of states is a continuous function of

the energy, introducing non analyticities at this level [43,44].

Since certain singularities in the entropy of a kind of short

range systems have their origin at the microscopic level, it has

being suggested that some vestiges of this connection should

be found there. On the other hand, the study of the integer

quantum Hall e�ect, discovered in 1980 [63], led to the know-

ledge of a new type of phase transitions independent on spon-

taneous symmetry breaking, the so-called topological phase

transitions, phenomena quite di�erent from those previously

analized. This fact gave further impulse to the QPTT (see for

example [46,64] and [65, 66] for criticisms and responses).

However, the best strategy seems to be the use of the so-

called canonical ensemble [93] as it shall be shown in other

section, at least in the case of real Bose �nite particle systems.

Moreover, nowadays, the great problem is to characterize phase

transitions at a mesoscopic level, i.e., for small particle systems

far away from thermodynamic limit.

Let us remember that in 1902, W. Gibbs introduced, simul-

taneously, the conceptions of microscopic ensemble, canonical

ensemble, and grand canonical ensemble.

The problem of why the Gibbs ensemble describes thermal equi-

librium (at least for �large systems�) when the above physical

identi�cations have been made is deep and incompletely clari-

�ed. (David Ruelle [91])
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The question of using in�nite systems as idealizations for

studying the behavior of the �nite ones is a hard mathematical

problem. In this context, one of the most important approa-

ches consists in replacing the original model by a mathema-

tically tractable one taking care of that both systems result

thermodynamically equivalent, in some proper sense. Any-

way, the derivation of exact expressions for limit pressures can

be avoided, in the case of very complicated models, by deri-

ving upper and lower bounds for suitable correlation functions.

Finally, the energy operators of a wide class of mean �eld mo-

dels are diagonal with respect to the so-called number opera-

tors and in this scenario the associated limit thermodynamic

functions can be derived by applying probabilistic methods.

However these models depend on strong physical assumptions

which reduces their range of applicability. In the next sections

a brief account of that strategies will be given.

Although all these methods could give us a reasonable pic-

ture about how phase transitions really work, the idea of spon-

taneous breakdown of continuous symmetries in the thermo-

dynamic limit as representative phenomenom of the changes

of symmetries in real situations, keeps being, de�nitively, hard

to grasp.
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6. Emergentism vs reductionism?

I mention in this section the alleged dispute between emer-

gentism and reductionism in science (particularly in physics

and chemistry) just anecdotally, because it sounds to me a

false con�ict. The following paragraph, due to R. Laughin,

clari�es the situation very well:

From the reductionist standpoint, physical law is the motivating

impulse of the universe. It does not come from anywhere and

implies everything. From the emergentist perspective, physical

law is a rule of collective behavior, it is a consequence of more

primitive rules of behavior underneath (although it need not

have been), and it gives one predictive power over a limited

range of circumstances. Outside this range, it becomes irre-

levant, supplanted by other rules that are either its children or

its parents in a hierarchy of descent. Neither of these view-

points can gain ascendancy over the other by means of facts,

for both are fact-based and both are true in the traditional

scienti�c sense of the term.The issue is more subtle a matter of

institutional judgment. To paraphrase George Orwell, all facts

are equal, but some are more equal than others [88].
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7. Bose Einstein condensation

In this chapter, it will be shown that the usual theory of

BEC, based on notions such as thermodynamic limit, is not

necessarily contradictory with the phenomena described by ex-

periments carried out in magnetic and optical traps for �nite

atom systems (mesoscopic systems), even taking into account

that they are quite di�erent in many aspects from the so-called

textbook Bose- Einstein Condensation.

For someone equipped with a sharp vision or with very spe-

cialized sensory organs capable of detecting not only molecules

or atoms but also the amount of them, conceptions such as in-

�nite number of particles, could be very confusing. Moreover,

this singular being might be unable to distinguish macroscopic

objects as we do. Thus, it seems reasonable to think that a

species accustomed to interaction with large but �nite particle

ensembles, at microscopic, mesoscopic and macroscopic levels,

ought to develop a type of ad-hoc discrete mathematics to de-

scribe such a world where in�nite systems have no sense. The

question arises immediately: theoretically and experimentally

speaking, are there �rsthand phenomena in our physical reality

to which we can access not only at microscopical level but also

at a macroscopic level, in a similar way as the just described,

enriching our own vision of the macroscopic world?

The phenomenon of Bose Einstein Condensation (BEC), pre-

dicted by Einstein in 1925 [10], corresponds to a macroscopic

occupation of a single quantum state (ground state) by a large

number of identical bosons (particles whose states are repre-

sented by symmetric wave functions).
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Until recently the best experimental evidence that BEC could

occur in a real physical system was the phenomenon of super-

�uidity in liquid helium as suggested originally by London[11]

who introduced the concept of macroscopic occupation of the

ground state and conjectured that the momentum-space con-

densation of bosons is enhanced by spatial repulsion between

the particles [12]. However, nowadays, there exists a con-

siderable amount of experimental evidence for BEC [13, 14].

Given the di�culty of the problem of proving the existence

of BEC from a mathematical point of view, it is desirable to

have idealized models in which one can develop concrete sce-

narios for BEC. In this sense, great e�orts have been made

to study Bose systems whose energy operators consider repul-

sive mean interactions represented by diagonal operators in the

occupation numbers. It frequently leads to thermodynamically

stable systems which can be classically understood.

BEC has been extensively studied, in the framework of quan-

tum equilibrium statistical mechanics, as a kind of second or-

der phase transition.

In this scenario, the theory predicts that at low tempera-

tures and large densities of particles, quantum e�ects should

become essential for the macroscopic behavior of the system.

Moreover, under suitable assumptions, for some kind of models

(homogeneous non interacting and weakly interacting Bose

systems) displaying BEC, the mathematical formalism shows

that a spontaneous symmetry breaking associated to gauge

transformations may occur.
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The development of highly sophisticated cooling techniques

(laser cooling, vaporization) led to con�rm, experimentally, in

the case of diluted atomic gases trapped in magnetic or optical

traps, the Einstein′s conjecture after 70 years (1995).

A signi�cant experimental support was giving to the mi-

croscopic theory of super�uidity, closely related to BEC, by

the observation in laboratory of the spectrum of elementary

excitations [37] predicted by N.N. Bogoliubov in 1947 in an

outstanding article [38].

Unlike all the previously mentioned theoretical many parti-

cle models, trapped gases are inhomogeneous and �nite-sized

systems. Even more, they can display low dimensional BEC,

phenomenon prohibited for in�nite Bose particle systems (Ho-

henberg theorem). Indeed, the number of atoms that can be

put into the traps is not truly macroscopic. So far experiments

have been carried out with a maximum of about 107 atoms.

As a consequence, the thermodynamic limit is never reached

exactly.

Thus, strictly speaking, in the context of this theory, such

a behavior of trapped atoms is not a phase transition [92].

Moreover, W. Ketterle and van Drutten proved that the re-

sults obtained in �nite size systems, in cases of certain dilute

atomic gases, for some values of the critical parameters, such

as chemical potential, temperature and condensate density, di-

�ers with those obtained in the thermodynamic limit. They

have shown that the occupation of states of low energies, for

these parameters, in that limit, disappear [9,10].
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[...] the existence of a mathematically sharp phase transition is

not crucial to the description of real systems. What is impor-

tant is the appearance of a `condensation,' by which we mean

the rapid accumulation of a substantial fraction of the N parti-

cles into the ground state (without big �uctuations about this

average) when the temperature falls below a certain �nite value.

[93]

On the other hand, fragmentation of condensate, a novel

phenomenom permitted at mesoscopic level, vanishes in the

thermodynamic limit [98]. However, it is necessary to point

out that these results were not at all surprising given the na-

ture of the experiments. The quite obvious di�erence between

the Bose gases con�ned in magnetic traps and the standard

theory of BEC made evident the need to adapt the former

mathematical strategies to the context of the observed phe-

nomena or simply to develop them further. In other words,

in the light of new discoveries, physicists and mathematicians

are always compelled to reformulate or broaden old scienti�c

de�nitions.

A relevant question is: why the just described phenomena

are so relevant today? The answer is very simple: these sys-

tems, constituted by �nite number of atoms, respond quite well

to experimental manipulations at a fundamental level. More-

over, mesoscopic systems can be considered as a kind of bridge

between the microscopic world and its macroscopic counter-

part. In this sense, they represent the best theoretical and

experimental scenario to analize a kind of real quantum many

particle systems not only from a microscopic point of view but

also from the perspective of the canonical ensemble.
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On the other hand, there is little chance of �nding physical

phenomena that can be, simultaneously, both theoretically and

experimentally studied �rsthand as the case of BEC. It should

contribute in the near future to a deeper comprehension of

general phase transitions.

In this sense, a microscopical approach based on a constraint-

cuto� mechanism of critical �uctuations (see [26] and refer-

ences therein) has been used to study BEC in ultra-cold trapped

gases, avoiding the infrared divergences. This approach will be

discussed in a future essay.
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8. Mathematical framework: Textbook BEC

In quantum mechanics, physical observables are given by an

algebra of selfadjoint operators (generally unbounded) (A, ∗),
where ∗ is an involution, de�ned on a suitable space of states

(Hilbert space).

For a quantum system of many non interacting particles and

in the framework of the �rst quantization formalism, the ope-

rator Sl = −42 , (4− laplacian) de�ned on the Hilbert space

Hl = L2(Λl), being Λl =
[
− l

2 ,
l
2

]ν ⊂ Rν a cubic box of boun-

dary ∂Λl and volume Vl = lν, represents the one-particle ener-

gy operator.

Under suitable boundary conditions Sl becomes a self-adjoint

operator on a dense set D ⊂ Hl, such that Slϕj = −1
24ϕj =

λl(j)ϕj with j ∈ N ∪ {0}, being {ϕj} a set of orthonormal

eigenfunctions and λl(0) < λl(1) ≤ λl(2) ≤ .... That is, for

the particle system there exist both a countable set of accesi-

ble states as a countable set of accessible energies.

The second quantization formalism for many particle Bose

systems consists in: 1. de�ning a Hilbert space for a sys-

tem consisting of exactly N particles as HN
B := SB

(
⊗Ni=1Hi

)
,

where SB is the so-called symmetrization operator, and Hi =

Hl for all i; 2. de�ning a Hibert space for a system with ar-

bitrary number of particles, as FB(H) := ⊕∞N=0HN
B , (Fock

space, with H0
B = C; 3. introducing the operators of creation

and annihilation of particles, âi, â
†
i , satisfying the commuta-

tion rules: [âi, â
†
j ] = âiâ

†
j − â†j âi = δi,j, where j ∈ N ∪ {0};

4. writing all observable A in terms of such operators, i.e.,

applying the rule A→ A(â, â†).
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If a selfadjoint operator Ĥl on the Hilbert space FB, repre-

sents the energy operator of the system, the operator Ĥ
(N)
l =

Ĥl|HNB is its restriction to the a space of exactly N− parti-

cles. β = T−1 and µ ∈ R are the inverse temperature and the

so-called chemical potential, respectively.

Ĥl(µ) is de�ned as Ĥl(µ) := Ĥl − µN̂ where N̂ is the total

number operator given by N̂ =
∑
j

n̂j being n̂j = â†j âj the

number operator associated to the j− mode.

Ĥl can be decomposed as the following sum: Ĥl = Ĥ0
l + ĤI

l ,

where Ĥ0
l =

∑
j

λl(j)â
†
j âj and Ĥ

I
l =

∑
i,j,k,l

Vi,j,k,lâ
†
i â
†
j âkâl are the

seccond quantizations of the laplacian and of the interaction

V, respectively.

With these de�nitions, at �nite volume, it is possible to in-

troduce the grand canonical partition function Ξl(β, µ) and

the pressure pl(β, µ) :

Ξl(β, µ) := TrFB exp
(
−βĤl(µ)

)
, pl(β, µ) :=

1

βVl
ln Ξl(β, µ);

the canonical partition function ZN,l(β, %) and the free energy

fl(β, %l), where %l = N
Vl

:

ZN,l(β, %) := TrH(N)
B
e−βĤl

(N)

, fl(β, ρl) := − 1

βVl
lnZN,l(β, %),

and, �nally, the Gibbs states in the grand canonical ensemble

and in the canonical ensemble:

〈·〉Ĥl(µ) = Ξ−1(β, µ) TrFB · exp
(
−βĤl(µ)

)
,
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〈·〉
Ĥ

(N)
l

= ZN,l(β, %) TrH(N)
B
· exp

(
−βĤ(N)

l

)
,

respectively.

The limit free energy f(β, %) and the limit pressure p(β, µ)

are de�ned as:

f(β, %) := lim
Nl,Vl→∞

fl(β, %l), assuming that lim
Nl,Vl→∞

%l = %,

and

p(β, µ) := lim
Vl→∞

pl(β, µ), assuming that

lim
Vl→∞

〈
N̂

Vl

〉
Ĥl(µ)

= lim
Vl→∞

ρl = ρ(µ)

On the other hand, stable systems are de�ned as those for

which there exists µ∗ ∈ R such that only for µ ∈ (−∞, µ∗],
p(β, µ) <∞, while superstable systems satis�es p(β, µ) <∞.
for all values of µ. Finally, if the following inequality (in the

sense of operators)

ĤI
l ≥ −

C2

Vl
N̂ +

C1

Vl
N̂ 2

holds, the system is superstable.
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9. Types of BEC

• Condensation of type I corresponds to a macroscopic oc-

cupation of a �nite nuber of states. Thus, a macroscopic

occupation of the the ground state, or traditional Bose-

Einstein condensation, is given by the ful�llment of the

condition

lim
Vl→∞

〈
n̂0
Vl

〉
Ĥl(µ)

= ρ0 > 0.

For the latter, in the condensed-uncondensed phase tran-

sition the suitable order parameter is ρ0 = ρ− ρc, being
ρc a critical density.

• Condensation of type II holds when there exists an in�-

nite number of states macroscopically occupied

• Condensation of the type III holds when there are not

macroscopically occupied states but the following con-

dition holds:

lim
δ→0+

lim
Vl→∞

1

Vl

∑
p∈Λ∗,λl(p)<δ

〈n̂p〉Ĥl(µ) > 0.

The third type of Bose condensation, denominated general-

ized BEC (GBEC), was introduced by M. Girardeau in 1960

[70].

GBEC is more robust that the other kinds of condensation in

the sense that it is independent on the shape of the con�ning

region. Indeed, in the case of the free Bose gas, it always occurs

for particle density values larger than a critical one. Moreover,
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it has been demonstrated that this type of condensation is sta-

ble with respect to mean �eld perturbations of the free Bose

gas [21]. In this framework a general theory of BEC was devel-

oped in ref.[73] for a noninteracting system of Bose particles.
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10. Other BEC definitions

10.1. Penrose-Onsager criterion. Let ΨN
0 (x1, · · · ,xN) be

the normalized ground state in H(N)
B .

γ0(x,x′) = N

∫
R3(N−1)

ΨN
0 (x,x2, ··,xN)ΨN

0 (x′,x2, ··,xN)
N∏
j=2

dxj

%0(x) = γ0(x,x) = N

∫
R3(N−1)

|ΨN
0 (x,x2, ··,xN)|2

N∏
j=2

dxj.

In this case,

Tr[γ̂0] =

∫
%0(x)dx = N.

The condition for Bose-Einstein condensation, in this frame-

work, is:

1

V

∫ ∫
γ0(x,y)dxdy = O(N),

if NV → cte., when N, V →∞.

10.2. Diagonal and o� diagonal long range orders. The

kernel of operator γ̂0 is,

γ0(x,x′) = n0ϕ0(x)ϕ̄0(x′) +
∑
j

njϕj(x)ϕ̄j(x
′)

For large N the sum can be replaced by an integral, vani-

shing when ||x′ − x|| → ∞.
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11. Ideal Bose gas

The Hamiltonian of the ideal Bose gas is given as:

Ĥ0
l =

∑
p∈Λ∗l

λl(p)n̂p.

The sum runs over the set Λ∗l = {p = (p1, p2, p3) ∈ R3 :

pα = 2πnα/l, nα ∈ Z, α = 1, 2, 3}. â†p, âp are the Bose ope-

rators of creation and annihilation of particles de�ned on the

Fock spaceFB, satisfying the usual commutation rules [âq, â
†
p] =

âqâ
†
p − â†pâq = δp,qI, n̂p = â†pâp is the number operator as-

sociated to the mode p. N̂ =
∑
p∈Λ∗l

â†pâp is the total number

operator and λl(p) = p2/2.

Note that the Fock spaceFB is isomorphic to the tensor

product ⊗p∈Λ∗l
FB

p where FB
p is the one-mode Fock space con-

structed from the one-dimensional Hilbert spaceHp = {γeip·x}γ∈C.

11.1. Grand canonical thermodynamic sum. For the ideal

Bose gas, being µ < λl(0), we have,

TrFB(Hl)[e
−βĤ0

l (µ)] =
∏
p∈Λ∗l

∑
{np}

e−β(λl(p)−µ)np =
∏
p

(1−e−β(λl(p)−µ))−1.

From this, the following expression for the �nite pressure is

obtained:

p
(id)
l (β, µ) = − 1

βVl

∑
p∈Λ∗l

ln(1− e−β(λl(p)−µ)).
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This result leads to,

〈n̂p〉Ĥ0
l (µ) =

1

eβ(λl(p)−µ) − 1
.

Finally, the following relation can be derived,

ρ
(id)
l (µ) = ρ

(id)
0,l (β, µ) +

1

Vl

∑
p∈Λ∗l \{0}

〈n̂j〉Ĥ0
l (µ),

where ρ
(id)
l (µ), ρ

(id)
0,l (β, µ) represent the total density of parti-

cles and the density of particles associated to the zero, with

chemical potential α and �nite volume Vl respectively.

Taking a sequence {µl} such that µl → 0−, in the thermo-

dynamic limit Vl →∞) it is obtained,

ρ(id)(0) = ρ
(id)
0 (β, 0) + ρ(id)

c (β),

where it has been assumed that

ρ(id)
c (β) = lim

Vl→∞

1

Vl

∑
p∈Λ∗l \{0}

1

eβλl(p) − 1
<∞.

Therefore,

ρ
(id)
0 (β, 0) = ρ(id)(0)− ρ(id)

c (β).

ρ(id)(0) is assumed constant while ρ
(id)
c (β) is a decreasing func-

tion of β.. Thus, the condition for condensation is satis�ed for

values of β such that β > βc, where βc is the unique solution of

the equation ρ(id)(0) = ρ
(id)
c (β). Note that Bose condensation

in a 2-dimensional box can take place only at zero temperature.

On the other hand, assuming that ~ = 1, m = 1 (m is the

particle mass) and λ =
√

2πβ, the density of particles at �nite

volume for the d− dimensional free Bose gas is given as,
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ρl =
1

Vl

(
z

1− z

)
+

1

λd
gd/2(z) = ρ0,l +

1

λd
gd/2(z)

being

gd/2(z) =
1

Γ(d/2)

∫ ∞
0

dx
ze−xxd/2−1

1− ze−x

z = eβµ the fugacity and Γ(c), c ∈ C\R−, the Gamma func-

tion.

For d = 2 we get,

g1(z) =
1

Γ(1)

∫ ∞
0

dx
ze−x

1− ze−x
= ln

(
1− ze−x

)
|∞0

= − ln (1− z) .

Therefore, after passing to the thermodynamic limit, taking

µ → 0−, ρ goes to in�nity. In conclusion, in two dimensions

Bose-Einstein condensation is excluded.

A similar argument leads to the proof of absence of BEC in

the case of the one-dimensional uniform ideal Bose gas.

On the other hand, it is possible to prove that BEC always

holds for dimensions d ≥ 3. Indeed, for d = 3, we have,

ρl =
1

Vl

(
z

1− z

)
+

1

λ3
g3/2(z).

In this case, g3/2(z) is a bounded, positive, monotonically in-

creasing function of z ∈ [0, 1]. Hence, since g3/2(1) = ζ(3/2),

where ζ(s) is the Riemann zeta function of s, g3/2(z) ≤ ζ(3/2)

for all z ∈ [0, 1].
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Using these facts, in the thermodynamic limit we get,

λ3ρ0 = λ3ρ− g3/2(z) > λ3ρ− g3/2(1).

Therefore, ρ0 > 0 when λ3ρ > g3/2(1), i.e., under this condi-

tion the system undergoes BEC. Clearly, ρc = 1
λ3g3/2(1).

Note that the density of states for a homogeneous d-dimen-

sional system is ρ(ε) = Kγε
γ−1, where Kγ is a constant and

γ = d
2 . However, for the harmonic oscillator γ = d.
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12. Criticisms

Conceptually, the necessity of the thermodynamic limit is an

objectionable feature: �rst, the number of degrees of freedom in

real systems, although possibly large, is �nite, and, second, for

systems with long-range interactions, the thermodynamic limit

may even be not well de�ned. These observations indicate that

the theoretical description of phase transitions, although very

successful in certain aspects, may not be completely satisfactory

[33].

It has been pointed out that the grand canonical ensemble

misrepresents some physical quantities in presence of conden-

sate, for example, by overestimating �uctuations of the con-

densate number (see for example [93] and references therein).

To overcome this problem, the canonical ensemble has been

extensively used, speci�cally on the basis of recurrence rela-

tions for ZN,l. Moreover, di�erences between results obtained

in the critical region of Bose -Einstein condensation by using

the GCE statistics and others obtained in the framework of

the canonical ensemble have been recently communicated:

[...] the exact GCE result di�ers from the corresponding canonical-

ensemble result by a factor on the order of unity even in the

thermodynamic limit. Thus, a widely used GCE approach does

not describe correctly the critical phenomena at the phase tran-

sition for the actual systems with a �xed number of particles

and yields only an asymptotic far outside the critical region.
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13. Conservation laws and selection rules

In 1918, Emmy Noether, established the connection between

continuous symmetries and conservation laws in nature. For

example, translational invariance to conservation of the lineal

momentum, time invariance leads to energy conservation, etc.

If

[O, Ĥl(µ)] = 0,

being

O(t) = e−itĤl(µ)OeitĤl(µ),

it follows that

dO(t)

dt
= − i

~
[O(t), Ĥl(µ)] = 0.

If O = N̂ satis�es the above commutation rule, the particles

number is conserved in the system. In this case, Ĥl(µ) becomes

invariant under the gauge transformations associated to the

group U(1) given as

âp → eiϕâp, â†p → e−iϕâ†p.

From this, the following selection rules

〈
â†p1
· ·â†pr âq1

· ·âqs
〉
Ĥl(µ)

= 0, if r 6= s,

hold.

In particular,
〈
â†p
〉
Ĥl(µ)

= 〈âp〉Ĥl(µ) = Vlηl = 0.

On the other hand, translational invariance is associated to

the conservation of the total momentum, whose associated ope-

rator is given by,

P =
∑
p∈Λl

pâ†pâp
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In this case,

[Ĥl(µ),P] = 0⇒
〈
â†p1
· ·â†pr âq1

· ·âqs
〉
Ĥl(µ)

= 0,

if p1 + ...+ pr 6= q1 + ...+ ps.

N̂ , and P are denominated �symmetry generators�.
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14. Symmetry breaking and groundstate

The study of the so-called spontaneous symmetry breaking

of continuous symmetry, fundamental notion in quantum sta-

tistical physics, has received important contributions of many

scientists, among them,Y. Nambu [134], J. Goldstone [99-100],

P. Higgs [135], S. Weinberg [136] and N.N. Bogoliubov [91].

The latter one introduced conceptions such as the coherent

macroscopic state with a �xed phase and the displacement

canonical transformation of the �eld operator describing the

Bose-Einstein condensate in the framework of the study of the

free Bose gas and in the case of a super�uid model.

A crucial role in the standard theory of quantum phase tran-

sitions has been historically played by the notion of order pa-

rameter, de�ned as the thermal average -of certain operator-

presenting one or more gaps in the thermodynamic limit as

function depending on the inverse temperature and the chemi-

cal potential (grand canonical ensemble) or on the density of

particles (canonical ensemble).

At �nite volume, a continuous symmetry is associated with

many in�nitely degenerated ground states connected between

them by unitary symmetry transformations. In this sense,

these states are physically equivalent, having the same energy,

and being the ground state of the system, sometimes, under-

stood as a superposition of them. However, in the thermody-

namic limit, these connections vanish, and an in�nite number

of inequivalent ground states arise.
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On the other hand it is di�cult to speak about exact symme-

tries if their are being permanently broken by small distur-

bances. Mathematically speaking, the disturbance once cho-

sen and provided that the parameters on which it depends are

�xed, selects a unique ground state for the system. This fact

leads, in a natural way, to obtain analytical expressions for the

order parameter, which can take, after passing to the thermo-

dynamic limit and switching o� perturbation, di�erent values,

depending on the choice of the mentioned vacuum.

Finally, one of the most signi�cant consequences of the spon-

taneous breaking of a symmetry is the emergency of soft modes

in the energy spectrum, the so-called Nambu-Goldstone modes.

[...] NG quanta are not simply mathematical constructs. They

are realistic physical boson particles, dynamically generated by

SSB. They undergo scattering with other particles of the system

or with observational probes, as for example in neutron-phonon

scattering in crystals).[176]
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15. BEC and spontaneous symmetry breaking

(SSB)

The standard strategy devoted to eliminate the before men-

tioned degeneracy consists in introducing a small term on the

original energy operator, preserving its self-adjointness but

eliminating the symmetry corresponding to some conservation

law.

Thus, it is possible to break the global U(1) symmetry by

adding the extra term −
√
Vlh
(
â0e

−iϕ + â†0e
iϕ
)
to the original

energy operator obtaining the new Hamiltonian Ĥl,h,φ(µ) =

Ĥl(µ) −
√
Vlh
(
â0e

−iϕ + â†0e
iϕ
)
for which [N̂ , Ĥl,h,ϕ(µ)] 6= 0,

being h ∈ R+, ϕ ∈ [0, 2π). In this case, the former selection

rules, at �nite volume, do not hold anymore, i.e.:

|
〈
â†p
〉
Ĥl,h,ϕ(µ)

| = | 〈âp〉Ĥl,h,ϕ(µ) | =
√
Vlηl,h,ϕ 6= 0.

For a Bose system undergoing BEC, in the thermodynamic

limit, we have

lim
h→0

lim
Vl→∞

η2
l =

{
ρ0 6= 0 if ρ > ρc

0 if ρ ≤ ρc

From a mathematical point of view, for ρ ≤ ρc, in the un-

condensed phase, it is possible to make a limit exchange, ob-

taining:

lim
h→0

lim
Vl→∞

ηl,h,ϕ = lim
Vl→∞

lim
h→0

ηl,h,ϕ = 0.

However, for ρ > ρc,

lim
h→0

lim
Vl→∞

ηl,h,ϕ 6= lim
Vl→∞

lim
h→0

ηl,h,ϕ
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In this context the limit thermal averages de�ned as

≺ · �:= lim
h→0

lim
Vl→∞

〈−〉Ĥl,h,ϕ(µ)

have been denominated Bogoliubov quasiaverages or anoma-

lous averages.

Thus, the degeneracy of regular averages, produced by the

presence of additive conservation laws (or equivalently, by the

invariance of the Hamiltonian with respect to certain groups

of transformations) is re�ected by the dependence of quasi av-

erages on the extra in�nitesimal term. In this sense N. N. Bo-

goliubov claimed that the latter are more �physical� than the

regular averages [91]. However this procedure, in some cases,

has been applied without having necessarily a clear physical

meaning.

We are assuming that other types of degeneracy do not exist

and, thus, the introduction of the term [...] is su�cient for the

removal of the degeneracy. (N. N. Bogoliubov [91])

Let ρ̂0,l = V −1
l â†0â0, η̂l = Vl

− 1
2 â0. In the case of the free Bose

gas, for

Ĥ0
l,h,ϕ =

∑
p

λl(p)â†pâp −
√
Vlh
(
â0e

−iϕ + â†0e
iϕ
)
,
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being Λ∗l = {p = (p1, . . . , pd) ∈ Rd : pα = 2πnα/l, nα ∈
Z, α = 1, 2, ..., d}, and λl(p) = p2/2, the following limits

lim
h→0+

lim
Vl→∞

〈ρ̂0,l〉Ĥl,h,ϕ(µ) = ρ0, lim
h→0+

lim
Vl→∞

〈η̂l〉Ĥl,h,ϕ(µ) =
√
ρ0e

iϕ

hold [91]. In other words:

lim
h→0+

lim
Vl→∞

〈ρ̂0,l〉Ĥl,h,ϕ(µ) = lim
h→0+

lim
Vl→∞

| 〈η̂l〉Ĥl,h,ϕ(µ) |
2 = ρ0.

Let us consider the following perturbation of the free Hamil-

tonian:

Ĥl,ν(µ) = Ĥ0
l (µ)−

√
V ν(eiθâ†0 + e−iθâ0).

Let

â0 = −ν
µ
eiθ
√
V + b̂0, â†0 = −ν

µ
e−iθ
√
V + b̂†0

Substituting this operators in the original energy operator,

Ĥ0
l = −µb̂†0b̂0 +

∑
p∈Λl

∗\{0}

(
p2

2
− µ

)
â†pâp +

ν2V

µ
.

It is assumed that,

µ = − ν
√
ρ0,l

.

Clearly, 〈
b̂†0

〉
Ĥ0
l,ν(µ)

=
〈
b̂0

〉
Ĥ0
l,ν(µ)

= 0.

Besides, 〈
b̂†0b̂0

〉
Ĥ0
l,ν(µ)

=

(
exp β

(
ν
√
ρ0

)
− 1

)−1
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〈n̂p〉Ĥ0
l,ν(µ) =

(
exp β

(
ν
√
ρ0

+
p2

2

)
− 1

)−1

.

Then,

ρl = ρ0,l +
1

V

∑
p∈Λl

∗\{0}

(
exp β

(
ν
√
ρ0

+
p2

2

)
− 1

)−1

.

Passing to the thermodynamic limit,

ρ = ρ0 +
1

(2π)3

∫ (
exp β

(
ν
√
ρ0

+
p2

2

)
− 1

)−1

d3p.

On the other hand,

〈
b̂†0b̂0
V

〉
Ĥ0
l,ν(µ)

=

〈(
â†0√
V
−√ρ0,le−iθ

)(
â0√
V
−√ρ0,leiθ

)〉
Ĥ0
l,ν(µ)

= lim
V→∞

1

V

(
exp β

(
ν
√
ρ0,l

)
− 1

)−1

= 0.

This leads to,

lim
V→∞

1

V
(
〈
â†0â0

〉
Ĥ0
l,ν(µ)
−√ρ0,le−iθ

〈
â†0√
V

〉
Ĥ0
l,ν(µ)

−√ρ0,leiθ
〈
â0√
V

〉
Ĥ0
l,ν(µ)

+ ρl) = 0.

In other words,
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ρ0 = lim
V→∞

∣∣∣∣∣∣
〈
â†0√
V

〉
Ĥ0
l,ν(µ)

∣∣∣∣∣∣
2

15.1. Ground state. Let, Ψ1,0 6= 0 be the vacuum of the

original ideal system. At �nite volume V , the transformation

b̂0 = U(z)â0U
−1(z) = â0−zI, where U(z) = exp{z̄â0−zâ†0},

and z ∈ C, is a unitary equivalent representation of the Bose

commutation rules.

Clearly, b̂0Ψ1,0 = −zΨ1,0 6= 0, for z 6= 0, therefore Ψ1,0 does

not represent the vacuum of b̂0.

On the other hand,

U(z)â0Ψ1,0 = b̂0 (U(z)Ψ1,0) = 0⇒ Ψ2,0(z) = U(z)Ψ1,0.

corresponds to the vacuum of b̂0.

From the Baker-Campbell-Hausdor� formula it follows that,

U(z) = exp

{
−1

2
|z|2
}

exp{−zâ†0} exp{z̄â0}

Ψ2,0(z) = exp

{
−1

2
|z|2
}

exp{−zâ†0}Ψ1,0

= exp

{
−1

2
|z|2
} ∞∑

n=0

(−z)n√
n!

Ψ1,n.

This means that, the ground state Ψ2,0(z) is a coherent state

which can be written as a linear combination of Fock space

functions. In other words, we have a set of equivalent Fock
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spaces. Moreover, in the case of the free Bose gas, the substi-

tution â0 = z
√
V + b̂0 leads to

〈Ψ1,0, Ψ2,0〉 = exp

{
−1

2
V |z|2

}
→ 0, when V →∞.

Thus, in the in�nite system Ψ1,0 ⊥ Ψ2,0, i.e., we have unitary

inequivalent representations for the Bose commutation rules.

By �xing the value of z as
√
ρ0e

iϕ, the value of the order

parameter has been also �xed.

Besides, note that

〈Ψ2,0, â0Ψ2,0〉 =
〈

Ψ2,0,
(√

V ρ0e
iϕ + b̂0

)
Ψ2,0

〉
=
√
V ρ0e

iϕ.

Analogously, 〈
Ψ2,0, â

†
0Ψ2,0

〉
=
√
V ρ0e

−iϕ.

Thus, for an in�nite system, we have: Ψ1,0 ⊥ Ψ2,0, i.e., in-

�nite states of minimum energy, all orthogonal to each other

appear or, in other words, we have in�nite inequivalent repre-

sentations of the commutation rules.

On the other hand, by �xing z as
√
ρ0e

iϕ, we also �x the

value of the expression EΨ2,0
(â0), where

EΨ2,0
(â0) = 〈Ψ2,0, â0Ψ2,0〉 =

〈
Ψ2,0,

(√
V ρ0e

iϕ + b̂0

)
Ψ2,0

〉
=
√
V ρ0e

iϕ.

It is possible to prove that,
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EΨ2,0
(â†0) =

〈
Ψ2,0, â

†
0Ψ2,0

〉
=
√
V ρ0e

−iϕ,

i.e.:

EΨ2,0

(
â0
V

)
=
√
ρ0e

iϕ, EΨ2,0

(
â†0
V

)
=
√
ρ0e

−iϕ.

This values remain constant in the thermodynamic llimit

Therefore, if ρ0 represents the amount of condensate in the

state Ψ2,0, orthogonal to Ψ1,0 in the limit. Moreover,

EΨ2,0
(â†0)EΨ2,0

(â0) = ρ0.

This also follows for systems with Hamiltonians of the type

[98]:

Ĥl,h,δ =
∑
p∈Λl

∗

λl(p)â†pâp +
∑

p,p′,q∈Λ∗l

V̂ (q)â†p+qâ
†
p′−qâpâp′−

−
√
Vlh
(
â0e

−iϕ + â†0e
iϕ
)
,

where V̂ (q) is the Fourier transform of the two body potential

V (r), i.e.,

V̂ (q) =
1

V

∑
x,y∈Λl

V (r)eiq·r, r = x− y,

satisfying |V̂ (q)| ≤ ϕ <∞. See also an alternative derivation

of this result given by A. Süt® in [83].
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The non-commuting limits [...] show that any tiny perturba-

tion is su�cient to break the symmetry. No real-world system

is completely free of external perturbation. Thus the limiting

procedure of maintaining a small external �eld while taking the

thermodynamic limit could be viewed not only as a mathemati-

cal trick but also to good approximation as the actual situation

in nature as well [153]

According to these arguments this procedure would re�ect

the instability of the thermal averages against to small pertur-

bations involving the violation of the gauge symmetry. How-

ever, we must remember again that both Bose condensation

as SSB occur only in the thermodynamic limit which in real

physical systems is never reached. Moreover an underlying

question is whether there is only one restricted class of pertur-

bations compatible with the chosen order parameter, with the

existence of pure states and ODLRO (o� diagonal long range

order).

At this point let us remember that generally speaking in�-

nite equilibrium states should behave as ergodic states. Thus,

unlike the original Gibbs state 〈·〉Ĥl,hϕ(µ) , being A,B local ob-

servables written in terms of operators of creation and annihi-

lation operators and τx the map representing a translation in

x ∈ Rν, x ∈ Rν, the Bogoliubov quasi-average ≺ · � satis�es

the ergodicity condition:

lim
||x||→∞

≺ Aτx(B) �=≺ A �≺ B � .
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In this context the quasi-average is a more adequate notion,

in a physical sense, than the degenerate equilibrium state for

studying many particle Bose systems. Indeed, in a recent work

[101] it has been shown that Bogoliubov quasi-averages select

the pure or ergodic states in the ergodic decomposition of the

thermal (Gibbs) state.

[...] we reexamined the issue of ODLRO versus SSB by the

method of Bogoliubov quasi-averages, commonly regarded as

a symmetry-breaking trick. We showed that it represents a

general method of construction of extremal, pure or ergodic

states, both for quantum spin systems [...] and many-body

Boson systems [...] (W. F. Wreszinski, V. A. Zagrebnov[101])

The presence of such particular kind of disturbances would

be not only a su�cient condition but a necessary for the ex-

istence of ergodic states, identi�ed by the standard theory of

phase transitions as pure states (or pure phases). Thus, the

above mentioned theoretical result tends rather to complicate

the scenario than to clarify it in the sense that only a very

particular type of perturbation would be capable of producing

a symmetry rupture consistent with this theory.

A. Verbeure commented,

We should note that SSB can occur only in the thermodynamic

limit formulation of equilibrium [...] It is also clear that adding

a symmetry breaking term to the Hamiltonian is a forced way

of breaking the symmetry of the system and is not the same

as the phenomenon of spontaneous breaking of the symmetry

[102].
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In this sense, the introduction of an external �eld does not

explain by itself the broken of symmetry and therefore the

notion of asymptotic approximation, in this case, should be

clari�ed. However, for �nite systems, and Vl large enough, the

following behavior should be expected to occur:

〈
â†0â0
Vl

〉
Ĥl,h,ϕ(µ)

∼ ρ0,

〈
â0√
Vl

〉
Ĥl,h,ϕ(µ)

∼ √ρ0eiϕ.

From this it can not be determined whether the transition,

if it exists, is spontaneous or not, however, once the condensed

and uncondensed phases emerge, the thermodynamic limit, as

an approximation of the real phenomena far away from criti-

cal regions, seems to be a suitable scenario for determining

numerical estimations for the condensate density and for the

order parameter de�ning the breakdown of symmetry for �nite

but large enough systems. However, this is a conjecture that

should be con�rmed or rejected on the basis of experimental

evidence.

On the other hand, the introduction of that kind of exter-

nal �elds implies strong technical constrains on the possible

experiments to be carried out for verifying that asymptotic

behaviour. In this sense, in absence of specially designed and

controled laboratory experiences: what could be the proba-

bility of occurrence of such a macroscopic behaviour in the

physical realm? Does spontaneous gauge symmetry breaking

represent really a contingent phenomenon? Despite a physical
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model must satisfy conditions of plausibility and solubility

[103], the scope of both notions is not clearly stated in this

particular case. Moreover, in absence of macroscopic occupa-

tion of the ground state [104], there will be no spontaneous

symmetry breaking, even in the presence of GBEC (or nonex-

tensive BEC). In other words, the inclusion of these �elds, by

itself, does not guarantee the symmetry breaking in the ther-

modynamic limit. However, at mesoscopic level the absence

of selection rules may appear as an apparent breakdown of

the continuous symmetry although this e�ect is destined to

disappear in the aforementioned limit.

Thus, the introduction of quasi averages seems to be moti-

vated by a plausible physical consideration: many real phase

transitions are accompanied by the breakdown of symmetries.

A consequence of a global symmetry breakdown is the emer-

gence of the so-called massless Goldstone modes [99,100]. Their

appearance in experiments associated to Bose-Einstein con-

densation of magnons, in neighborhoods of critical regions, has

been recently reported.

The interplay between spontaneously broken gauge symmetries

and Bose-Einstein condensation has long been controversially

discussed in science, since the equation of motions are invari-

ant under phase transformations. Within the present model it

is illustrated that spontaneous symmetry breaking appears as

a non-local process in position space, but within disjoint sub-

spaces of the underlying Hilbert space. Numerical simulations

show that it is the symmetry of the relative phase distribution

between condensate and non-condensate quantum �elds which

is spontaneously broken when passing the critical temperature
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for Bose-Einstein condensation. Since the total number of gas

particles remains constant over time, the global U(1)-gauge

symmetry of the system is preserved.(Alexej Schelle [124])

Would it be a mistake to think that the breakdown of the

spontaneous symmetry is a necessary and su�cient physical

condition for the bosonic condensation? Is it true only if from

the beginning we consider a model including a �eld of the above

described type? Indeed, could it be ensured that a system free

of these kind of small and special disturbances can condense?

Fortunately, we can understand BEC and super�uidity with-

out breaking the U(1) symmetry, moreover, theories with and

without the U(1) gauge theory virtually yield the same results

in the thermodynamic limit [154].
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16. Weakly interacting Bose gas and

superfluidity. Bogoliubov approach

The denominated weakly interacting Bose gas, mathemati-

cally determined by a contact interaction potential V (x,y) =

gδ(x,y) where g represents the interaction coupling strength

in the second quantization formalism has a Hamiltonian given

as

Ĥl =
∑
p∈Λl

∗

p2

2
â†pâp +

g

2Vl

∑
p,p′,q∈Λ∗l

â†pâ
†
p′âp+qâp′−q.

In this case we have considered the particle mass m equal to

one.

The fundamental idea of Bogoliubov consisted in obtaining

a quadratic approximation of the original Hamiltonian by ne-

glecting terms with three and four operators obtaining an en-

ergy operator which can be diagonalized by a using a suitable

canonical transformation.

Ĥl =
∑
p∈Λl

∗

p2

2
â†pâp+

g

2Vl

(â†0)2â2
0 +

∑
p∈Λ∗l \{0}

(
2â†0â0n̂p + â2

0â
†
pâ
†
−p + (â†0)2âpâ−p

) .

Note that Ĥl still commutes with the total number operator

N̂ =
∑
p

n̂p.
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In this approach it is assumed not only that the mean num-

ber of particles in the condensate is large enough (1023 for

liquid 4He) at very low temperatures but that almost all parti-

cles are in it. Moreover, it is conjectured that the creation

and annihilation operators associated to zero mode, under

such conditions, behave themselves as c-numbers, i.e., com-

mute with each other and, for this reason, can be substituted

by
√
V N or

√
V n0, where N and n0 represents the total

number of particles and the number of particles in the ground

state, respectively (n0 ≈ N).

Ĥ ′l =
∑
p∈Λl

∗

p2

2
â†pâp +

gN

V

∑
p∈Λl

∗\{0}

â†pâp

+
gN

2V

∑
p∈Λl

∗\{0}

(
â†pâ

†
−p + âpâ−p

)
+
gN 2

2V
.

Clearly, Ĥ ′l is not invariant under the transformations asso-

ciated to the group U(1), before mentioned,

âp → eiϕâp, â†p → e−iϕâ†p.

This means that the total number of particles in the system is

not preserved. Fortunately, being Ĥ ′l a quadratic form in terms

of the creation and annihilation operators, can be diagonalized

by using the well-known transformations,

âp = upb̂p − vpb̂†−p, â†−p = upb̂
†
−p − vpb̂p,

with

u2
p − v2

p = 1
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and by de�ning

% =
N

V
, %0 =

n0
V
.

Thus, in terms of these new operators, representing elementary

excitations (Bogolyubov excitations or quasiparticles),

Ĥ ′l takes the form,

Ĥ ′′l =
∑

p∈Λl
∗\{0}

εl(p)b̂†pb̂p + 2ξl(p)v2
p − g%2upvp

where the elementary excitations spectrum is given as,

εl(p) =

√
p2

2

(
p2

2
+ 2%g

)
, ∀p ∈ Λ∗l \{0}

and

ξl(p) =
p2

2
+ g%0, ∀p ∈ Λ∗l \{0}.

This is, we have a system of non-interacting bosons with

energies given by the above mentioned Bogoliubov spectrum.

Moreover, b̂pΨ0 = 0, being Ψ0 the ground state of the original

system, i.e., excitations are absent from the ground state.

On the other hand,

εl(p) ≈

{
c||p|| if ||p|| �

√
2g% ,

p2

2 if ||p|| �
√

2g% ,

where c =
√
g% is the velocity of sound in liquid Helium.

This analysis, obviously, has been done in the framework of

the canonical ensemble. The grand canonical approach con-

siders an energy operator similar to the Hamitonian Ĥ ′l except
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that the total density must be replaced by the density of par-

ticles in the ground state. In this case the grand canonical

Hamiltonian written in terms of quasiparticles, conserves their

number, although this law is approximate since operators con-

taining high order terms violate this conservation law [125,126].

In fact, the operators of creation and annihilation of quasi-

particles b̂†p, b̂p give account of the exchange of particles with

the ground state.

Lev Landau proved, theoretically, that this kind of spec-

trum is associated to super�uidity, i.e., to the absence of disi-

pation. Moreover it indicates the presence of two interpene-

trating �uids, a super�uid one and a normal component cons-

tituted by quasiparticles (phonons). Although the Bogoli-

ubov spectrum of excitations dominates absolutely the thermo-

dynamics at low temperatures it does not describe the system

behaviour at higher temperatures, where other quasiparticles,

the rotons, drive thermodynamics.

Bogoliubov's work has revealed the possibility of a non-perturbative

approach to degenerate systems of bosons. It has led to the

recognition of the important role of the condensate in estab-

lishing the phonon spectrum [139]
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17. c-substitution and the approximating

Hamiltonians method

An e�ective Hamiltonian could inherit or not inherit the con-

servation laws of the original energy operator, as is often the

case with the mean �eld approximations in which the role of

�uctuations is neglected, however, it is fundamental that their

characteristics ensure the thermodynamic equivalence of the

systems they represent in an adequate sense and that also a-

llow to obtain information about correlation functions, order

parameters, etc. This is the essence of the so-called approxi-

mating Hamiltonian method which usually complements quite

well with the concept of quasimeans. Thus, for example, the

usual strategy used for connecting BEC with spontaneous sym-

metry breaking consists in constructing an e�ective Hamilton-

ian depending on a complex parameter, in such a way that the

pressures obtained by using the original operator and the e�ec-

tive one, respectively, coincide in the thermodynamic limit, in

some sense, being the latter mathematically tractable. In other

words, the original system is being compared with a solvable

model. This fact makes possible the derivation of analytical

expressions for limit thermodynamic functions.

Despite it was in 1947, in the context of the study of super-

�uidity in Bose gases at low density, and under a heuristic rea-

soning, that N. N. Bogoliubov [38] proposes that the operators

â†0, â0, associated to the zero mode in the original Hamiltonian

Ĥl(µ) can be replaced by c-numbers for Vl large enough, i.e.,

â†0 →
√
Vlz̄, â0 →

√
Vlz, obtaining an approximating energy

operator Ĥapp
l (z, µ), it was only in 1968 that J. Ginibre rigo-
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rously proves that the limit pressure of the weakly Bose gas

is asymptotically equivalent to the pressure constructed by u-

sing such an approximation [39]. Moreover, from his proof it

follows that this is a feasible replacement independent on the

presence of condensate. Thus, the original justi�cation of the

c-number substitution based on the existence of macroscopic

occupation of the zero mode showed to be erroneous.

Remember that, from a mathematical point of view, the Fock

space FB is decomposed as the tensorial product F0 ⊗ F ′B,
where F0 is the symmetric tensor algebra constructed in

the one-dimensional space of constants (mode 0) and F ′B is

its complementary orthogonal tensor algebra of functions in

L2 (Λl) .

For any complex number z ∈ C, let us consider a coherent

vector in F0, φz = e−Vl|z|
2
/2

∞∑
n=0

1

n!

(
V

1
2

l z
)n (

a†0

)n
φ0, being φ0

the vacuum vector in F0. Thus, for any operatorÂ (with Wick

ordering) de�ned on FB, it is possible to construct the so-called
approximation of Bogoliubov Â (z) in the following way〈

Ψ′1, Â (z) Ψ′2

〉
F ′B

:=
〈

Ψ′1 ⊗ φz, ÂΨ′2 ⊗ φz
〉
FB
,

where Ψ′1,Ψ
′
2 ∈ F ′B. In this sense, the transition from the

operator Â to the operator Â (z) consists in replacing the ope-

rators â0 y â†0 for the complex numbers
√
Vlz and

√
Vlz̄,

respectively in the operator : Â : (normal form of Â). The

standard proof of equivalence of pressures is based on a well

known trace and convexity inequalities (see ref. [85]). De�-

ning,
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χl(z, µ) =
Ĥapp
l (z, µ)− Ĥl(µ)

Vl
, ∆l(z, µ) = 〈χl(z, µ)〉Ĥapp

l (µ) ,

it follows that 0 ≤ pl(β, µ)− papp
l (β, z, µ) ≤ ∆l(z, µ).

Finally, if lim
Vl→∞

inf
z

∆l(z, µ) = 0, noting that:

0 ≤ pl(β, µ)− sup
z
papp
l (β, z, µ) ≤ inf

z
∆l(z, µ),

we get

p(β, µ) = lim
Vl→∞

sup
z
papp
l (β, z, µ).

Thus,

The validity of substituting a c-number z for the p = 0 mode

operator â0 is established rigorously in full generality, thereby

verifying one aspect of Bogoliubov 1947 theory. This substitu-

tion not only yields the correct value of thermodynamic quanti-

ties like the pressure or ground state energy, but also the value

of |z|2 that maximizes the partition function equals the true

amount of condensation in the presence of a gauge-symmetry

breaking term - a point that had previously been elusive [40]
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18. Upper and lower bounds methods

18.1. Bogoliubov inequalities. Let Ĥa,l and Ĥb,l be self-

adjoint operators de�ned on D ⊂ FB. pa,l(β, µ), pb,l(β, µ)

represent the grand canonical pressures and the free canonical

energies corresponding to the operators Ĥa,l, Ĥb,l. In this case

the following well known Bogoliubov inequalities,

〈
Ĥa,l(µ)− Ĥb,l(µ)

Vl

〉
Ĥa,l(µ)

≤ pb,l(β, µ)− pa,l(β, µ)

≤

〈
Ĥa,l(µ)− Ĥb,l(µ)

Vl

〉
Ĥb,l(µ)

,

hold, where 〈−〉Ĥa,l(µ), 〈−〉Ĥa,l(µ) are the Gibbs states in the

grand canonical ensemble associated to the Hamiltonians Ĥa,l, Ĥb,l,

respectively.

18.2. Infrared bounds method. The derivation of upper

and lower bounds for correlation functions to analyze classical

and quantum phase transitions has been an essential part of

statistical mechanics, mainly because of the di�culty of accu-

rately solve the problem of determining exact expressions for

limit grand canonical pressures. During the seventies of the

past century, J. Frölich, B. Simon and T. Spencer developed

the so-called Method of Infrared Bounds devoted to prove rigo-

rously phase transition for some classical systems with con-

tinuous symmetries, by obtaining upper bounds for suitable

correlation functions [59,86]. This strategy is based on notions
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such as Gaussian Domination and Re�ection Positivity (RP).

RP was introduced by K. Osterwalder and R. Schrader in ref.

[87]. This approach was extended to quantum lattice spin sys-

tems by E. Lieb and B. Simon [62]. In the quantum case, the

mentioned upper bounds are derived by using the so-called

Falk-Bruch inequality [106], which is just one in a long list

(see for example Brooks Harris inequality [109], Ginibre ine-

quality [108], etc. See also ref. [111] for further reading) This

fact makes necessary to derive, previously, upper bounds for

the so-called Bogoliubov inner product or Duhamel two point

function (DTPF) and for the thermal average of a double com-

mutator. Bounds for the DTPF, under suitable conditions,

can be obtained from a trace inequality-Gaussian Domination

(GD)-, involving thermodynamic sums. In turn, GD follows

in the case of quantum lattice systems, when possible, from

symmetry arguments related to the algebra of observables.

In nature, we observe abrupt changes in certain basic physi-

cal quantities, such as the magnetization of a magnet, but the

statistical mechanics of systems with �nitely many degrees of

freedom is typically real analytic in all external variables. The

resolution of this apparent paradox is that the abrupt changes

are only approximately abrupt: True discontinuities only occur

in the limit of an in�nite system. For this reason, one must

expect the problem of rigorously proving the existence of phase

transitions to be a di�cult one even for systems for which there

is considerable numerical evidence or even a heuristic explana-

tion for such a transition. [90]
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The Bogoliubov inner product (X, Y )Γ is a bilinear form

given by

(X, Y )Γ =
(
Tr e−βΓ

)−1 ∫ 1

0

(
TrXe−β(1−x)ΓY e−βxΓ

)
dx

where X, Y are arbitrary operators and Γ represents a selfa-

joint operator de�ned on a Hilbert space. This form commonly

is associated to upper bounds for thermal averages of the type

〈XX∗ +X∗X〉Γ.

By introducing the following functions

g(A) =
1

2
〈AA∗ + A∗A〉Γ, b(A) = (A∗, A)Γ,

c(A) = 〈[A∗, [βH,A]]〉Γ
for arbitrary operators A and assuming that b, g, c > 0 and

b ≤ b0, c ≤ c0 it was proved that (Falk-Bruch inequality [106]):

g0 = 1
2

√
c0b0cothx0, x0 =

√
c0
4b0

18.3. Lower bounds. The following Bogoliubov inequalty,

1

2
〈{A,A∗}〉Γ〈[C∗, [βH,C]]〉Γ ≥ |〈[C,A]〉Γ|2

provides a lower bound for the �uctuations of an arbitrary

operator A in terms of C, where {A∗, A} is the anticommuta-

tor de�ned as: {A∗, A} = A∗A + AA∗. A fundamental role is

played by this inequality in proving the absence of long range

order for Bose systems with a broken symmetry (U(1) sym-

metry) in one and two dimensions in the framework of quasi-

averages approach. In this case the so-called Hohenberg theo-
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rem [80] follows, by considering A = âp and C = ρ̂q =∑
p

â†pâp−q in the Bogoliubov inequality (see next section).

However, the Bogoliubov inequality is useless in the case of

zero temperature. In such a case, L. Pitaevskii and S. Stringary

derived the following inequality [105]:

〈{A,A∗}〉Γ ≥ |[A∗,C]〉Γ|2
〈[C∗,C]]〉Γ .

Note that this inequality does not contain explicitly either

the temperature or the Hamiltonian Ĥ.

Finally, G. Roepstor� proved a more strong version of the

Bogoliubov inequality [108]:

〈A∗A〉Γ ≥ 〈[A,A∗]〉Γ exp
〈[C∗, [βH,C]]〉Γ〈[A,A∗]〉Γ

|〈[A,C∗]〉Γ|2
.

The derivation of these kind of inequalities must be counted

as a great step forward.

18.4. The Hohenberg theorem. In 1966, N. D. Mermin and

H. Wagner demonstrated the absence of ferromagnetism or

antiferromagnetism (long-range order) in one- or two-dimensio-

nal isotropic Heisenberg models [140]. The proof is based,

precisely, on the mentioned inequality. In 1967, Hohenberg

proved [80], by using the same inequality, the absence of lange

range order in Bose and Fermi systems for one and two dimen-

sions and �nite nonzero temperatures. In 1969, N. Mermin

published an article about some applications of Bogoliubov in-

equality in equilibrium statistical mechanics [142]. Beginning
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at this point, the use of such an inequality to demonstrate sim-

ilar results in the case of di�erent types of low dimensional par-

ticle systems became a usual scienti�c practice (see for example

[107] and [143-146] for further reading).

In the summer of 1965, Geo�rey Chester and I were in the

Canadian Rockies, talking loudly to scare o� grizzlies. Chester

shouted that he had recently heard from Pierre Hohenberg that

a curious inequality of Bogoliubov could be used to make an

apparently rigorous proof that Bose-Einstein condensation or

superconductivity could not happen in one or two dimensions.

The Bogoliubov result appeared as an original article in a jour-

nal otherwise devoted to German translations of Russian pa-

pers. It was thus available in virtually no libraries outside of

Germany, and I don't remember thinking further about the ma-

tter until fall. N.D. Mermin [141]

Let me sketch brie�y the demonstration of absence of Bose-

Einstein condensation in one and two dimensions given by Ho-

henberg.

Let Λ∗l = {p = (p1, p2, · · · , pd) ∈ Rd} be the set of wave vec-
tors compatible with periodic boundary conditions, such that,

||p|| ≤ pc, for a system of Bose particles con�ned in a region

of Rd, with volume V. In the framework of the quasiaverage

notion, the energy operator of an interacting Bose system is

given by,

Ĥl,ν =
∑
p∈Λl

∗

p2

2
â†pâp +

1

2Vl

∑
p,p′,q∈Λ∗l

Û(q)â†p+qâ
†
p′−qâpâp′

−
√
V ν(e−iϕâ†0 + eiϕâ0),
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with Û(q) = Û(−q), including a breaking symmetry term.

Let A = âq and C = ρ̂q =
∑
p

â†pâp−q. Besides, note that

ρ̂∗q = ρ̂−q =
∑
p

â†pâp+q.

By using the following identities,

{A∗, A} = 2n̂q + 1, [C∗, [βĤl,µ(µ), C]] = βN̂q2, [A,C] = â†0

in the Bogoliubov inequality we get,

〈n̂q〉Ĥl,ν
≥
| 〈â0〉Ĥl,ν

|2

β
〈
N̂
〉
Ĥl,ν

q2
− 1

2
=

η2
l

βρlq2
− 1

2
, for q 6= 0,

where

ηl =

∣∣∣∣∣
〈
â0√
V

〉
Ĥl,ν

∣∣∣∣∣ .
This leads to,

1

V

∑
q 6=0

〈n̂q〉Ĥl,ν
≥ 1

V

∑
q6=0

(
η2
l

βρlq2
− 1

2

)
.

Being η = lim
V→∞

ηl, taking the limit ν → 0 after passing to

the thermodynamic limit, the following inequality

ρ− ρ0 ≥ lim
ε→0+

1

(2π)d

∫
ε<||q||<pc

(
η2

βρq2
− 1

2

)
dq
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holds, where dq = dq1dq2 · · · dqd, and q2 = q ·q, being �·" the
usual euclidean inner product.

In this case, it is easy to see that,

lim
ε→0+

∫
ε<||q||<∞

dq

q2
=

{
∞ if d = 1, 2

<∞ if d ≥ 3

Thus, the infrared divergence can not be eliminated in one

or two dimensions. Therefore, since the density of particles is

a constant, the last inequality in such cases holds only if η = 0,

i.e., in absence of continuous symmetry breaking..

The Hohenberg theorem (HT) provides the general statement

that Bose-Einstein condensation (BEC) cannot occur in a two-

dimensional system. In this analysis a condensation implies

extensive occupation of a single state of the system, that is,

a density of particles of order N/V , (where N is the number

of particles in the system and V the volume of the system)

in the thermodynamic limit. Recently however there has been

renewed interest in the possibility of a �smeared,� �fragmented,�

or �generalized� BEC, in which some �nite band of states, rather

than a single state, is occupied.[133]
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19. Large deviation method

There exists an extensive literature devoted to the study of

mean �eld type Bose models. We shall restrict ourselves to

mention just the basic ones. In the mean �eld model, the in-

teraction is represented by the term aN̂2

2V (Huang- Davis model),

where the constant a > 0 represents the interaction intensity.

In refs. [71,72] it was shown that, under suitable conditions,

it represents a repulsive interaction, which at low densities is

given by the potential U(x,y) = aδ(x − y) or Û(p) = a, for

all p ∈ R3, being Û(p) the Fourier transform of U(x−y). The

natural generalization was proposed by Davies in ref.[73].

ĤHD
l =

∑
p∈Λl

∗

λl(p)â†pâp + Vlg

(
N̂

V

)
,

where g(x) is a positive convex and increasing function of

x ∈ [0,∞), a > 0, and FB is the Fock space. Being the corres-

ponding Hamiltonians diagonal operators with respect to the

number operators, E. B. Davies gave a rigorous mathematical

treatment to them on the basis of a probabilistic approach

at in�nite volume, obtaining an exact expression for the limit

mean density of particles as function of the chemical potential.

Unlike the free Bose gas, it was also proved that the imperfect

Bose gas has the same limit thermodynamic behavior for both

the microcanonical as the grand canonical ensembles, being

also stable to the small perturbations in�uence.

In refs. [74-76] the Method of Large Deviations (LDM),

based on a Varadhan theorem [77], was applied to the study
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of the so-called Huang-Davies and Huang-Davies-Luttinger mo-

del. The latter was introduced by Huang et.al. as a result of

the application of the �rst order perturbation theory to general

models. This has an interaction described by the operator:

Ĥl = a
2V

(
2N̂ 2 −

∑
j≥1

n̂2
j

)

The LDM constitutes a powerful mathematical tool for rigo-

rously proving the existence of the limit pressure and for deri-

ving explicit expressions for it as function of chemical poten-

tial. In this case, the partition function can be written as an

integral respect to a probability measure belonging to the set

of bounded positive measures on R+.

Let the sequence {Λl : l = 1, 2, ..} of regions in Rν and

Vl. their respective volumes,. Each region Λl is associated a

countable set Ωl of con�gurations of particles enclosed in Λl.

Ωl is a suitable probability space of random variables ω. In

this framework, the selfadjoint operators ĤHD
l , Ĥ0

l are re-

placed by the functions HHD
l , H0

l : Ωl → R, respectively,
interpreted as the energies of the Huang-Davies model and the

non interacting model for the con�gurations ω and Nl : Ωl →
N represents the number of particles in Λl. Thus, the grand

canonical measure Pαl associated to the free boson gas, with

chemical potential µ, is de�ned on the subsets Ωl as:

Pαl [A] = [Ξ
(0)
l (β, α)]−1

∑
ω∈A⊂Ωl

eβ(αNl(ω)−H0
l (ω))
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where, as always, β is the inverse temperature, α < 0, and

Ξl(β, µ) is the grand canonical partiton function

Ξl(β, µ) =
∑
ω∈Ωl

e−βVl(gα◦X(ω))eβ(αNl(ω)−H0
l (ω)),

gα(x) = g(x) − (µ − α)x, and the grand canonical pressure

pl(β, µ) is given as

pHDl (β, µ) = p0
l (β, α) + 1

βVl
ln
∑
ω∈Ωl

e−β(gα◦X(ω))Pµl [ω].

By introducing the function Xl = Nl
Vl
, the above relation can

be rewritten as:

pHDl (β, µ) = p0
l (β, α) + 1

βVl
ln

∫
[0,∞)

e−βVlgα(x)Kµ
l (x),

where Kα
l is the distribution function de�ned by Kα

l = Pαl ◦
X−1
l .

There exists a function Iα(·) : [0,∞) → [0,∞), satisfying

Kα
l [dx] ∼ eβVlI

α(x) and denominated rate function, such that:

pHD(β, µ) = lim
Vl→∞

1

βVl
ln

∫
[0,∞)

e−βVlgα(x)Kα
l [dx]

= sup
x∈[0,∞)

{−gα(x)−Iα(x)} = sup
x∈[0,∞)

{(µ−α)x−g(x)−Iα(x)}.

This is nothing more than a singular version of the old prin-

ciple of Laplace.

Finally, for the sequence {Kl, l = 0, 1, 2, ..} of probability

measures on [0,∞) the rate function Iα(·) is given as:
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Iα(x) = p0(β, α) + f 0(β, x)− αx,

where f 0(β, x) is the limit free energy of the free boson gas,

obtained as the Legendre transform of p0(β, ·):

f 0(β, x) = sup
α<0
{αx− p0(β, x)}.
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20. Non-conventional BEC

20.1. Boundary conditions and spectral gap. The be-

havior of Bose systems at the boundary of its con�nement

region of volume V (for example, a cubic box of side l) is a

fundamental problem in the study of many particle systems. In

the case of a cubic box, the particles can be repelled, attracted

or re�ected by the boundaries.

Remember that the energy of a gas of non-interacting Bose

particles is described by the free Laplacian operator 4l un-

der suitable boundary conditions and its eigenvalues E, repre-

senting the energy levels of the system, are obtained from the

equation −4`φ/2 = Eφ, where φ are the free Laplacian eigen-

functions.

Di�erent kinds of boundary conditions have been extensively

studied for the free Bose gas for example in refs.[160-162].

In this case, we are interested in attractive boundary condi-

tions which are given by the condition

∂φ

∂n
+ χφ = 0,

where ∂φ/∂n is the outward normal derivative on the boun-

dary, being χ < 0 the attraction strength parameter. In this

scenario, the spectrum of the Laplacian presents a gap. In

other words, the lowest energy (which is −dχ2 in the thermo-

dynamic limit, where d is the dimension of the system) is a

non-vanishing (negative) isolated point of the spectrum. This

fact, unlike Neumann, Dirichlet and periodic boundary condi-

tions leads to condensation in any dimensions. Indeed, when
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χ < 0 we are in presence of a not homogeneous condensate

mostly concentrated near the boundaries, i.e. many of its par-

ticles bind to the container walls. Thus the attractive wall

condensation is a surface e�ect rather than the usual bulk

phenomenon obtained under other boundary conditions. In

realistic scenarios such as a not homogeneously distributed in

space trapped gas the excitation spectrum is separated from

the ground state [15]. Moreover, models with attractive boun-

dary conditions are extremely useful in the study of wetting

phase transitions in a superconductor [163] and for proving

the existence of super-surface �lms in liquid helium II [11].

On the other hand, in the homogeneous cases any spectral gap

vanishes in the thermodynamic limit.

Many authors have considered the idea of introducing a spec-

tral gap between the ground state and the excited states in the

case of some Bose gases, including the ideal one, for studying

condensation in di�erent situations.

In this sense, in refs. [164-166] a homogeneous Bose gas

with periodic boundary conditions and a two-body interaction

enclosed in a region of volume V has been exhaustively studied.

In this works the term -4â†0â0, where 4 > 0 and â†0, â0 are

the creation and annihilation operators of the zeroth mode,

was added to the corresponding energy operator, shifting in

this way the zeroth energy level of the kinetic energy operator

to a negative value and generating a gap in the spectrum.

Thus, it was proved the emergence of BEC at low temperatures

for a class of superstable interacting systems at low enough

temperatures, large enough particle densities and spectral gap.
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For example, for the superstable mean �eld type model whose

energy operator is given by

Ĥ4b = Ĥ0,4 +
b

2V
N̂ 2,

where b > 0, V is the volume enclosing the particle system,

Ĥ0,4 and N̂ are the free energy operator including a spec-

tral gap and the total number operator, respectively, in ref.

[165] it is derived the following expression for the limit pre-

ssure p4b (β, µ) of the model:

p4b (β, µ) =

{
p4=0
b (β, µ), µ ≤−4+bρp(β,−4),

(µ+4)2

2b + pp(β,−4), µ >−4+bρp(β,−4),

where pp(β, µ) and ρp(β, µ) (β�inverse temperature, µ�chemical

potential) are the pressure and the total density of the ideal

Bose gas, respectively. In this case the amount of condensate

ρ40,b(β, µ) is given by:

ρ40,b(β, µ) =

{
0, µ ≤−4+ bρp(β,−4),
µ+4
b − ρ

p(β,−4), µ > −4+ bpp(β,−4).

The limit 4 ↓ 0 leads to

ρ4=0
0,b (β, µ) =

{
0, µ ≤ bρp

c(β),
µ
b − p

p
c(β), µ > bpp

c(β),

being pp
c(β) the critical density of BEC for the ideal gas. Clearly,

the independent on temperature terms in the expressions for

pressure and amount of condensate are consequence of the

presence of the gap in the energy spectrum of the free energy

operator. The amount of condensate still depends on tempera-
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ture. However, noting that N̂ 2 = N̂ ′2 + 2N̂ ′n̂0 + n̂2
0, being

n̂0, N̂
′, the operator number of particles associated to the low

energy level and the total number operator with exclusion of

n̂0, respectively, neglecting collisions between particles in the

condensate and the rest of the system particles and assuming

that the low energy level is equal to zero. For example, in

the case of periodic boundary conditions we get a superstable

model with energy operator

Ĥ4b = Ĥ0,4 +
b

2V
N̂ ′2,

for which macroscopic occupation of the ground does not oc-

cur. However, under attractive boundary conditions or by in-

troducing a spectrum gap in the excitation spectrum of the free

energy operator the above situation changes dramatically since

an independent on temperature macroscopic occupation of the

ground state takes place. In this sense, we are in presence of

a di�erent kind of condensation � non-conventional BEC (see,

for example, works [167-173] for further details).

20.2. Non conventional BEC. In early papers we have been

using di�erent approaches such as large deviations and ap-

proximating Hamiltonian strategies [170-173] for obtaining the

limit pressures in the case of Bose-atom systems with internal

two level (spin-1/2) an one level (spin-0) structures. This en-

abled us to prove interesting results related to non-conventional

or independent on temperature BEC in the case of Bose par-
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ticle systems whose ground states are associated to negative

values of energies. These results were extended to atoms sys-

tems with three internal levels and negative minimal energies

[156].

Exactly solvable models of strongly interacting bosons could

be helpful in understanding the nature of Bose-Einstein con-

densation (BEC) and super�uidity in interacting Bose gases.

In ref. [156] the thermodynamic behavior of some theoretically

relevant system of Bose particles was analyzed. The considered

model has rather simpli�ed character. Researches related to

similar models are connected with the attempt to consider the

e�ect of excitation-excitation coupling in Bogoliubov theory.

This system of Bose gas undergoes an independent on tem-

perature BEC. This kind of BEC was theoretically discovered

by Bru and Zagrebnov for some speci�c Bose system with di-

agonal interactions [167,168].

Ĥl =
∑
p

λl(p)â†pâp +
γ

V k−1

∑
p

(â†p)kâkp.

We study, using the Bogoliubov approximation, the thermo-

dynamic behavior of a superstable Bose system whose energy

operator in the second-quantized form contains a nonlinear ex-

pression in the occupation numbers operators. We prove that

for all values of the chemical potential satisfying µ > λ(0),

where λ(0) ≤ 0 is the lowest energy value, the system under-

goes Bose-Einstein condensation.

For the class of Hamiltonians given in the last equation, in

the framework of the so-called Bogoliubov c approximation, it
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has been given a simple proof of thermodynamic equivalence

of the limit grand-canonical pressures corresponding to those

systems and their respective approximating ones for any inte-

ger k ≥ 2.Moreover, in contrast to the Bru-Zagrebnov models,

we prove that independent on temperature BEC in the sense

of macroscopic occupation of the ground state holds for any

integer k ≥ 2 and any µ > λ(0). A similar type of BEC is ex-

plained entirely by superstability of the model and by absence

of an interaction between the ground state occupation number

operators and the nonzero modes ones.

By replacing the operators â†0, â0 in any operator A ex-

pressed in the normal form in the Hamiltonian Hl(µ) with the

complex numbers
√
V z̄ and

√
V z, z ∈ C we get the following

approximating Hamiltonian,

Ĥl =
∑
p6=0

(λl(p)− µ)â†pâp +
γ

V k−1

∑
p6=0

(â†p)kâkp

+(λ(p)− µ)V |z|2 + γV |z|2k.

In this case, the standard strategy leads to the following

results for the limit pressure and the amount of condensate:

p(β, µ) = lim
Vl→∞

sup
z∈C

papp
l (β, z, µ), ρ0 =

(
µ− λ(0)

γk

) 1
k−1

.
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21. Non linear perturbation of the Ideal Bose

Gas. M. Corgini and R. Tabilo

In this section we consider a model of a Bose gas whose

energy operator corresponds to the sum of the Hamiltonian of

the free Bose gas with a nonlinear perturbation represented by

the square root of the number operator associated to the zero

mode [175].

(1) Ĥapp
l,ν (µ) =

∑
p∈Λl

∗

λl(p)â†pâp − 2ν
√
V
√
n̂0 + 1− µN̂,

where ν > 0.

The Hamiltonian given by eq. (2) represents a stable model

de�ned in the domain D = {(β, µ) : β > 0, µ < 0}.
On the other hand, let Ĥ0

l,ν(µ) is de�ned as:

(2) Ĥ0
l,ν(µ) = Ĥ0

l (µ)− ν
√
V (eiϕâ†0 + e−iϕâ0), ν > 0.

Note that [Ĥapp
l,ν (µ), N̂ ] = 0, i.e. the energy operator given

by eq.(2) preserves the U(1) symmetry. However, [Ĥ0
l,ν(µ), N̂ ] 6=

0, i.e., the continuous gauge symmetry associated with the

U(1) group is broken by the external �eld −ν
√
V (eiϕâ†0 +

e−iϕâ0).

In the next section a strong connection between the critical

behavior of both models, in the thermodynamic limit, will be
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established.

The main purpose of this work is to determine explicit ex-

pressions for the limit pressures of the model given by eq.(2) in

the framework of the so called Laplace principle (see Appen-

dix) and the Large Deviations Method based in two theorems

proved by S. R. S. Varadhan [77]. Moreover, it shall be proven

the existence of a phase characterized by the emergence of non

conventional Bose-Einstein condensation, i.e., the existence of

an independent on temperature condensate.

21.1. Limit pressure and non conventional condensa-

tion.

Theorem 21.1. For (β, µ) ∈ D, ν > 0, in the thermody-

namic limit,

(3) papp(β, µ, ν) = −ν
2

µ
+ pid′(β, µ),

where papp(β, µ, ν), pid′(β, µ) are the the limit pressures of the

system whose Hamiltonian is given by the energy operator of

eq. (2) and the energy operator given by eq. (1), but excluding

the mode 0, respectively.

Proof. Let,

Ĥapp
l,ν =

∑
p∈Λ∗

λ(p)n̂p − 2
√
V ν
√
n̂0 + 1.
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Note that the function h(x) = ax+ b
√
x+ c, a, b ∈ R, x ∈

[0,∞), c > 0 is either an in�nitely increasing or an in�nitely

decreasing mapping on [0,∞) except the case a < 0, b > 0.

Let {gl} be a sequence of functions de�ned on [0,∞) given as,

gl(x) = (µ− λ(0))x+ 2ν

√
x+

1

V
, x ∈ [0,∞),

whose �rst and second derivatives are,

g′l(x) = (µ− λ(0)) + ν

(
x+

1

V

)−1/2

,

g′′l (x) = −ν
2

(
x+

1

V

)−3/2

< 0,

respectively.

From these facts, it follows that gl(x) is a concave function

attaining its global maximum at

x∗l =

(
ν

λ((0)− µ

)2

− 1

V
,

for a large enough value of V such that x∗l ≥ 0 and

lim
V→∞

sup
x∈[0,∞)

gl(x) = lim
V→∞

sup
x∈[0,∞)

gl(x
∗
l ) = −ν

2

µ
,

being µ < 0, λ(0) = 0.

Use will be made of the so-called large deviations method,

based on the Laplace principle, for obtaining a closed analy-

tical expression for papp(β, µ, ν). Since Ĥapp
l,ν (µ) is a diagonal

operator with respect to the number operators, the �nite pre-
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ssure can be written as,

papp
l (β, µ, ν) =

1

βV
ln TrFB exp{−βĤapp

l,ν (µ)}

papp
l (β, µ, ν)l =

1

βV
ln

∞∑
n0=0

exp β{(µ−λ(0))n0+2
√
V ν
√
n0 + 1}

+
1

βV
ln

∞∑
p∈λ∗\{0},np

exp β{(µ− λ(p))np}.

Noting, that

papp,0
l (β, µ, ν)l =

1

βV
ln

∞∑
n0=0

exp β{(µ−λ(0))n0+2
√
V ν
√
n0 + 1}

=
1

βV
ln

∞∑
n0=0

exp βV

{
(µ− λ(0))

n0
V

+ 2ν

√
n0
V

+
1

V

}

=
1

βV
ln

∞∑
n0=0

exp
{
βV gl

(n0
V

)}
.

It is not hard to see that {papp,0
l (β, µ, ν)} is a sequence of

Darboux sums, then, in the thermodynamic limit the Laplace

principle leads to the following expression,

papp(β, µ, ν) = −ν
2

µ
+ pid′(β, µ).

�
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Theorem 21.2. For (β, µ) ∈ D, ν > 0, in the thermody-

namic limit, the Bose Gas with Hamiltonian given by eq.(2)

undergoes non conventional condensation if and only if, the

ideal gas whose energy operator is given by eq. (1) also dis-

plays independent on temperature condensation. Moreover,

(4) pid(β, µ, ν) = papp(β, µ, ν),

and the amount of condensate satis�es:

(5) ρapp
0 (µ, ν) = ρid

0 (µ, ν) =
ν2

µ2

Proof. Note that:

(6) pid
l (β, µ, ν) =

1

βV
ln
(
1− eβµ

)
− ν2

µ
+ pid′

l (β, µ).

From this it follows that:

pid
l (β, µ, ν)−papp(β, µ, ν) =

1

βV
ln
(
1− eβµ

)
+pid′

l (β, µ)−pid′(β, µ).

Thus, in the thermodynamic limit, for �xed values of β and

strictly negative values of µ,
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pid(β, µ, ν) = papp(β, µ, ν).

On the other hand, using the Gri�ths Lemma [27],

∂µp
id
l (β, µ, ν)− ∂µpapp(β, µ, ν) = ρid

l (β, µ, ν)− ρapp(β, µ, ν)

=
1

V

(
1

e−βµ − 1

)
.

in this case,

(7) ρapp(β, µ, ν) =
ν2

µ2
+ ρc(β, µ),

(8) ρid
l (β, µ, ν) =

ν2

µ2
+

1

V

(
1

e−βµ − 1

)
+ ρc,l(β, µ).

From eqs. (8) and (9) we get:

(9) ρapp
0 (β, ν, ν) = ρapp(β, µ, ν)− ρc(β, µ),

(10) ρid
0,l(β, µ, ν) = ρid

l (β, µ, ν)− ρc,l(β, µ),
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being, as before:

ρc,l(β, µ) =
1

V

∑
p∈Λl

∗\{0}

(
exp β

(
p2

2
− µ

)
− 1

)−1

,

ρc(β, µ) =
1

(2π)d

∫ (
exp β

(
p2

2
− µ

)
− 1

)−1

d3p.

Since,

lim
V→∞

1

βV

(
1

e−βµ − 1

)
= 0,

for the �xed parameters (β, µ) ∈ D, ν > 0, and from the

expressions in eqs. (10) and (11), we have that both sys-

tems, simultaneously, undergo non conventional condensation.

Moreover, the amount of condensate is given as:

ρapp
0 (µ, ν) = ρid

0 (µ, ν) =
ν2

µ2
.

�

The Bogoliubov approach considers a chemical potential µ∗

such that µ∗ = − ν√
ρ0
, being ρ0 a real and strictly positive

constant

On the other hand, unlike the system given by the Hamil-

tonian in eq.(1), the system whose energy operator is represen-
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ted by (2) preserves the U(1) symmetry.

If ρid
0,l (β, µl, ν) = ρ0 = constant 6= 0, ρ0 > 0, µl < 0, we

have that:

ρ0 ∼
1

V (−µl + µ2
l /2)

+
ν2

µ2
l

.

Thus, for values of µl in a small neighborhood of zero,

βV ρ0 ∼ −
1

µl
+
βV ν2

µ2
l

.

By solving the second order equation in µl, we obtain:

µl ∼ −
1

2βV ρ0

(
1 +

√
1 + (2βV ν)2 ρ0

)
.

Finally, taking the thermodynamic limit:

lim
V→∞

µl = µ∗ = − ν
√
ρ

0

.

For the free Bose gas, this result means that in the domain

D, in spite of that the chemical potential µl depends on the

inverse temperature β at �nite volume, in the thermodynamic

limit µ depends only on the �xed parameters ρ0, ν.

21.2. Full diagonal models. Let ĤFD
l (µ) be the energy op-

erator de�ned as:

(11) ĤFD
l (µ) = Ĥ0

l +
a

2V

(
N̂ 2 − N̂

)
+

1

2V

∑
p,p′

v(p−p′)n̂pn̂p′.
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ĤFD
l (µ) belongs to a class of energy operators so-called full

diagonal Bose Hamiltonians. Clearly, ĤFD
l (µ) satis�es the

commutation rule [ĤFD
l (µ), N̂ ] = 0. For example, Ĥ0

l is a full

diagonal mode. If a > 0, and v(p − p′) ≥ 0 these are super-

stable systems, i.e., their limit pressures exist for all real value

of µ.

Let ĤFD
l,ν (µ), ĤFD,app

l,ν (µ) be the following operators:

(12) ĤFD
l,ν (µ) = ĤFD

l (µ)− ν
√
V (â†0 + â0), ν > 0,

(13) ĤFD,app
l,ν (µ) = ĤFD

l (µ)− 2ν
√
V
√
n̂0 + 1, ν > 0.

In this case, [ĤFD,app
l,ν (µ), N̂ ] = 0, and [ĤFD

l,ν (µ), N̂ ] 6= 0.

Theorem 21.3.

(14) pFD(β, µ, ν) = pFD,app(β, µ, ν).

Proof. For this kind of models in ref.[83] it has been proved

that:
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(15) lim
V→∞

〈
â†0√
V

〉
ĤFD
l,ν (µ)

= lim
V→∞

〈
â0√
V

〉
ĤFD
l,ν (µ)

= sgn ν lim
V→∞

√
V−1

〈
â†0â0

〉
ĤFD

l,ν (µ)
.

In our case sgn ν = +.

Let de�ne δpl, y δH as

δpl = pFD
l (β, µ, ν)− pFD,app

l (β, µ, ν),

δH = ĤFD,app
l,ν (µ)−ĤFD

l,ν (µ) = ν
√
V
(

2
√
n̂0 + 1− (â†0 + â0)

)
,

respectively.

Note that ĤFD,app(µ) preserves the U(1) symmetry. This

fact and the left hand side Bogoliubov inequality (see the

Apendix) lead to:

δpl ≥ 2ν

〈√
ρ̂0,l +

1

V

〉
ĤFD,app
l,ν (µ)

≥ 0.

Moreover, in the thermodynamic limit we get,

(16) lim
V→∞

δpl =≥ 2ν lim
V→∞

〈√
ρ̂0,l

〉
ĤFD,app
l,ν (µ)

≥ 0.
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From the right hand Bogoliubov inequality and the Jensen

inequality (see Apendix) we obtain:

δpl ≤
ν√
V

〈
2
√
n̂0 + 1− (â†0 + â0)

〉
ĤFD
l,ν (µ)

(17) ≤ ν

2

√
ρ̂0,l +

1

V
−

〈
â†0√
V

〉
ĤFD
l,ν (µ)

−
〈
â0√
V

〉
ĤFD
l,ν (µ)

 .

Finally, taking the limit V → ∞ and using the expressions

in eq.(16) and the inequalities (17) and (18),

0 ≤ lim
V→∞

δpl ≤ 0,

hence pFD(β, µ, ν) = pFD,app(β, µ, ν).

�

A well-known example of a full diagonal Hamiltonian is as-

sociated to the mean �eld model, whose energy operator with

an additional term broken the U(1) symmetry, is given by the

expression:

ĤMF
l,ν = Ĥ0 +

a

2V

(
N̂ 2 − N̂

)
− ν
√
V (â†0 + â0),

where a > 0, V is the volume of the region enclosing the

particle system and ν ∈ R.
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In this case, the operator ĤMF,app
l,ν has the following form:

ĤMF,app
l,ν = Ĥ0 +

a

2V

(
N̂ 2 − N̂

)
− ν
√
V
√
n̂0 + 1.

As before, ν > 0.

21.3. Conclusions.

a. For �xed parameters µ < 0, ν > 0, the pressures and

the density of particles in the condensates of the systems

whose operators are given by eqs. (1) and (2), in the

thermodynamic limit, coincide. Thus,

papp(β, µ, ν) = pid(β, µ, ν) = −ν
2

µ
+ pid′(β, µ),

ρid
0 (µ, ν) = ρapp

0 (µ, ν) =
ν2

µ2
,

i.e., both models are equivalent in a thermodynamic

sense and they undergo, simultaneously, non conven-

tional BEC in D.

b. The full diagonal models, with coupled external sources

given in eqs. (13) and (14), are thermodynamically

equivalent ones.
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c. Despite what has been said in a) and b), the external

source −2ν
√
V
√
n̂0 + 1 does not remove the degeneracy

of the regular averages.
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22. Trapped gases and the uniform Bose gas

22.1. Trapped gases. Atoms, con�ned in a magmetic trap,

are cooled by using laser cooling techniques and after this,

by applying evaporative cooling methods, allowing the most

thermal atoms escape from the trap, while the remaining ones

thermalizes into low temperatures. Besides the fact that com-

pletely isolated �nite systems do not exist [53], Bose trapped

Gases shows the following features:

1. Trapped gases are �nite size systems.

2. The number of atoms that can be put into the traps can

not be considered macroscopic: 102−107 atoms. Indeed,

this number of atoms is still far from what we consider

macroscopic world (1023).

3. In the framework of the standard theory of phase tran-

sitions, BEC and the corresponding breakdown of U(1)

symmetry exist only in the so-called thermodynamic

limit (bulk system) for, at least, stable systems.

4. In the presence of a signi�cant condensate, interaction

e�ects becomes determinant and dominate at T � Tc.

In this scenario the Bose ideal model does not describe

adequately the system behavior.

5. Trapped systems are spatially inhomogeneous -at least

until 2013 when BEC in a quasi uniform three dimen-

sional potential of an optical trap box was studied.

6. Trapped Bose gases can display low dimensional BEC

(in a mesoscopic sense), phenomenon prohibited for in-

�nite Bose particle systems (Hohenberg theorem).
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7. The thermodynamic limit is never reached exactly.

9. The number of particles is conserved implying that the

global U(1) symmetry is preserved (if some symmetry

is broken it has to be a global one, i.e., its correspon-

ding order parameter must be independent on space-

time, since from the so-called Elitzur′s theorem [115]

it follows that only non local order parameters can be

nonzero in the thermodynamic limit, although, it has to

be pointed out that a global symmetry can be always

obtained from a local symmetry by �xing the group′s

parameters of the latter in position and time).

10. In spite of (9) the merging of two condensates produces

interference patterns in their densities sometimes attri-

butable to spontaneous rupture of the continuous U(1)

symmetry. However, it has been a controversial assump-

tion.

11. To overcome the di�culties in de�ning pressure and vo-

lume for a gas con�ned in an inhomogeneous trap, it is

necessary to de�ne macroscopic parameters that behave

like them.

In this context, let us consider the case of an anisotropic gas

con�ned in a magnetic trap with the harmonic potential [15]:

Vext(r) =
m

2

(
ωxx

2 + ωyy
2 + ωzz

2
)
.
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The accessible energies are given byEnxnynz =
(
nx + 1

2

)
~ωx+(

ny + 1
2

)
~ωy +

(
nz + 1

2

)
~ωz, where nx, ny, nz take positive in-

teger values.

On the other hand Φ(r1, r2, ..., rN) = ⊗Ni=1φ0(ri) is the ground

state for the N− particle system, where

Φ(r1, r2, ..., rN) = ⊗Ni=1φ0(ri),

and

φ0(r) =
(mωh0

π~

)3/2

exp
[
−m

2~
(ωxx

2 + ωyy
2 + ωzz

2)
]

being ωh0
:= (ωxωyωz)

1
3 the so-called geometric mean (e�ective

frequency). For the energy E000 = ~
2(ωx+ωy+ωz), the density

distribution has the form: n(r) = N |φ0(r)|2. Finally the size

of the cloud and the number of particles in the grand canonical

ensemble are:

ah0
=

∫
|φ0(r)|2dr =

(
~

mωh0

)1/2

,

N =
∑

nx,ny,nz

(
eβ(Enxnynz−µ) − 1

)−1

,

respectively.

Thus,

N −N0 =
∑

nx,ny,nz 6=0

1

eβ~(ωxnx+ωyny+ωznz) − 1
,

for µ = 1
2(ωx + ωy + ωz), being N0 the number of particles in

the condensate.
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In the semiclassical approximation θ � ~ωh0
the above sums

can be replaced by integrals:

N−N0 =

∫ ∞
0

∫ ∞
0

∫ ∞
0

dnxdnydnz
eβ~(ωxnx+ωyny+ωznz) − 1

= ζ(3)

(
1

β~ωh0

)3

being ζ(n) is the Riemann zeta function.

When N0 → 0 we get the following inverse critical tempera-

ture βc for BEC transition:

β−1
c = θc = ~ωh0

(
N

ζ(3)

)1/3

= C~ωh0
N 1/3.

A kind of thermodynamic limit can be obtained by passing

to the limits N → ∞, ωh0
→ 0 and by keeping the product

ωh0
N 1/3 constant.

For β ≥ βc,

N0

N
= 1−

(
βc
β

)3

.

There are many di�erences between this kind of systems and

the model of the uniform Bose gas. Indeed. in the latter case,

the inverse temperature of transition and the ratio between the

number of particles in the condensate and the total number of

them in the system are given by the following expressions:

β−1
c =

2π~
m

(
N

V ζ(3/2)

)2/3

,
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N0

N
= 1−

(
βc
β

)3/2

,

respectively.

22.2. Uniform potential. Despite that ultracold Bose gases

have been traditionally used for testing fundamental many-

body physics, there exist signi�cant di�erences with �standard�

many-body systems. Indeed, while these are uniform, the ul-

tracold gases in harmonic traps do not have translational sym-

metries.

In the magnetic traps, not only is the number of particles quite

small, compared to the usual case, but the �boundary,� formed

by a quadratic potential well, extends literally throughout the

whole system. In order to take the thermodynamic limit in

such a system it is necessary to weaken the potential so that,

as the number of particles increases, the average density re-

mains constant. This is well-de�ned mathematically, but is of

course physically unrealizable. On the other hand, taking the

box size to in�nity in the homogeneous case is also unrealized

experimentally. [112]
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23. U(1) Symmetry breaking?

When passing the critical temperature for BEC a relative

phase distribution between condensate and non condensate

phases has been also experimentally detected. Obviously, since

the number of particles is �nite and preserved, these phenom-

ena can not be produced by a spontaneous U(1) symmetry

breaking. On the other hand, the usual external symmetry

breaking �eld in the case of atoms should be constituted by

atoms of the same sort and since the number of atoms is �nite

and well-known, the phase should be unknown as predicted by

the so-called phase-number uncertainty relation [113]. More-

over, it does not seem possible to determine whether the in-

terference pattern is an e�ect of the experimental observation

or a phenomena previous to any observational analysis. Fi-

nally, in trapped BEC interference patterns arise also from the

overlapping of independently Bose Einstein condensates.

DMATULS No. 1, 2018



DMATULS ESSAYS 108

24. Some comments

Ketterle and van Drutten proved that the results obtained

in �nite size sytems, in cases of certain dilute atomic gases, for

some values of the critical parameters, such as chemical po-

tential, temperature and condensate density, di�ers with those

obtained in the thermodynamic limit. Moreover they shown

that the occupation of states of low energies, for these param-

eters, in that limit, disappear [1,2].

The number of atoms that can be put into the traps is not

truly macroscopic. So far experiments have been carried out

with a maximum of about 107 atoms. As a consequence, the

thermodynamic limit is never reached exactly.

A �rst e�ect of the above mentioned fact is the lack of discon-

tinuities in the thermodynamic functions. Hence Bose-Einstein

condensation in these trapped gases is not, strictly speaking, a

phase transition. In practice, however, the macroscopic occu-

pation of the lowest state occurs rather abruptly as tempera-

ture is lowered and can be observed. The transition is actually

rounded with respect to the predictions of the N → ∞ limit,

but this e�ect, though interesting, is small enough to make the

words transition and critical temperature meaningful even for

�nite-sized systems. It is also worth noticing that, instead of

being a limitation, the fact that N is �nite makes the system

potentially richer, because new interesting regimes can be ex-

plored even in cases where there is no real phase transition in

the thermodynamic limit.

In this sense, the traps can be made very anisotropic, rea-

ching the limit of quasi-2D and quasi-1D systems, so that in-
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teresting e�ects of reduced dimensionality can be also studied,

as two dimensional BEC for �nite size systems. Indeed, BEC

state is impossible for an interacting gas in a 2D trap in the

thermodynamic limit, although �nite size BEC holds [3,4].

In this scenario, the condensation of type III, before men-

tioned, where a macroscopically signi�cant contribution of many

states in a small band of energies near to zero produces, in

the thermodynamic limit, an e�ect similiar to the macroscopic

ocupation of single states, seems to be a fertil mathematical

ground for further studies.
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25. New frontiers

The so-called quantum vortices play a very important role

not only in super�iudity but in superconductivity too. A quan-

tum vortex is composed by a core of non super�uid matter

surrounded by super�uid matter rotating respect to the �rst

one. This is a well-de�ned stable topological defect.

Unlike of the liquid helium, having a strong interatomic in-

teraction, the studied alkaline trapped gases show a weak inter-

atomic interaction and therefore their connection with super-

�uity can be analyzed more easily. This fact prompted physi-

cists to try to experimentally produce "vortices" in the case

of Bose-Einstein gaseous condensates under rotation [91,92].

Indeed, the formation of highly ordered vortices lattices was

con�rmed in 2001 experimentally in a rotating Bose gas [93].

In this case, when rotating or agitating the condensate, groups

of atoms emerge in closed circles, such as vortices or turbulent

clouds, a situation also observed in the case of helium in 2009

[94].

In an experiment conducted in 1998 by researchers at Har-

vard University led by Danish researcher Lene Vestergaard

Hau the speed of light passing through a condensate of sodium

atoms was reduced to 17 meters per second. This result could

have a huge impact on quantum information theory, especially

if our interest is to store it.

On the other hand, the permanent interaction of photons

with the medium should imply the non-conservation of their

total number. For this reason, the possibility that they could

condense was until recently disregarded. Indeed, when decrea-
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sing temperature the photons tend to disappear by the ab-

sorption in the walls of the con�nement region. However, in

2010, in an experiment carried out at the University of Bonn,

the induction of a special thermalization process allowed to

preserve the number of photons in con�nement with the con-

sequent formation of a photonic condensate in two dimensions

[96]:
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26. Appendix

26.1. Jensen's Inequality. Let Ĥl, be a self-adjoint opera-

tor, diagonal with respect to the number operators.Since the

spectrum of Ĥl, coincides with the set of non negative integers,

this model can be classically understood by using non negative

random variables de�ned on a suitable probability space Ωl.

Let Ωl be the countable set of sequences ω = {ω(p) ∈ N :

p ∈ Λ∗l } ⊂ N ∪ {0} satisfying∑
p∈Λ∗l

ω(p) <∞ .

The basic random variables are the occupation numbers {np :

j = 1, 2, ....}. They are de�ned as the functions np : Ωl → N
given as np(ω) = ω(p) for any ω ∈ Ωl. The total number of

particles in the con�guration ω is denoted as N(ω). Then the

total number, excluded the zero mode is denoted as N ′(ω).

In this framework, the Gibbs state can be written by repla-

cing Ĥl, by a functionHl : Ωl → R, representing the projection
of the energy operator on the occupation-number basis of the

Bose Fock space.

Let P be a probability de�ned for any ω ∈ Ωl as

(18)

P[ω] =

[∑
ω∈Ωl

exp (−β[Hl(µ)](ω))

]−1

exp (−β[Hl(µ)](ω)) .

For arbitrary S ⊂ Ω this implies that

DMATULS No. 1, 2018



DMATULS ESSAYS 113

(19)

P[S ⊂ Ωl] =

[∑
ω∈Ωl

exp (−β[Hl(µ)](ω))

]−1∑
ω∈S

exp (−β[Hl(µ)](ω)) .

In this case,
〈
X̂
〉
Ĥl(µ)

≡ E[X], being X : Ωl → R the

function corresponding to the proyection of the operator X̂ on

the occupation-number basis.

Thus, the expectation of X respect to P is de�ned as:

(20) E[X] =
∑
ω∈Ωl

X(ω)P[ω].

If X : R → R is a concave function, the following Jensen's

inequality,

(21) E[f(X)] ≤ f(E[X]),

holds.
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26.2. Gri�ths Lemma.

Lemma 26.1. (Gri�ths [27) Let {gn : I → R, I ≡ (a, b) ⊂
R}n∈N be a sequence of convex functions on I with a pointwise

limit g(x), which, of course is convex. Let G+
n (x) [resp. G−n (x)]

be the right (resp. left) derivatives of gn(x), and similarly for

G+(x), G−(x). Then, for all x ∈ I,

(22) lim
n→∞

supG+
n (x) ≤ G+(x), lim

n→∞
supG−n (x) ≥ G−(x).

In particular, if all the gn and g are di�erentiable at some

point x ∈ I, then

(23) lim
n→∞

dgn(x)

dx
=
dg(x)

dx
.

Proof. Fix x ∈ I and x± y ∈ I,

gn(x+ y) ≥ gn(x) + yG+
n (x),

gn(x− y) ≥ gn(x)− yG−n (x).

Fix y and take the limit n→∞. Then,

lim
n→∞

supG+
n (x) ≤ y−1[g(x+ y)− g(y)]

and similarly for lim
n→∞

inf G−n (x). Now let y ↓ 0.

�
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27. Final comments

1. Grand canonical approach. Bose mesoscopic systems

(Bose gases con�ned in anharmonic and harmonic traps) ad-

mit to be studied, in the grand canonical ensemble by using

standard mathematical approaches (by de�ning new e�ective

intensive and extensive variables, for example �volume�). Re-

cent experiments carried out in quasi uniform magnetic traps

show good agreement with the theory developed for uniform

Bose gases (textbook BEC). In this sense, far away from the

critical regions, the grand canonical approach works fairly well.

2. Canonical and Microcanical ensembles: New theoretical

strategies developed the last years, as the recently introduced

�truncated Fock Space�, gives us a profound insight on the be-

havior of such kind of mesoscopic systems, not only at a cano-

nical ensemble level but also at the microscopic one. These

approaches lead to a more exact and detailed description of

the critical regions of phase transition than the obtained by

appealing to the renormalization group theory, avoiding the

infrared divergences of the standard thermodynamic limit and

giving a suitable description of �uctuations close to the cri-

tical points. 3. These facts suggest that a complete theory

connecting both, microscopic and mesoscopic levels should be

possible for similar quantum many particle systems.
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